1,230
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Developing a geopolymer pastes using marble dust

, &
Pages 144-153 | Received 21 Dec 2021, Accepted 21 Nov 2022, Published online: 14 Dec 2022

References

  • Alex, T. C., Kalinkin, A. M., Nath, S. K., Gurevich, B. I., Kalinkina, E. V., Tyukavkina, V. V., & Kumar, S. (2013). Utilization of zinc slag through geopolymerization: Influence of milling atmosphere. International Journal of Mineral Processing, 123, 102–107. doi:10.1016/j.minpro.2013.06.001
  • Amin, N., Gul, S., Gul, S., & gul, S. (2016). Synthesis and characterization of geopolymer from bagasse bottom ash, waste of sugar industries and naturally available China clay. Journal of Cleaner Production, 129, 491–495. doi:10.1016/j.jclepro.2016.04.024
  • Andini, S., Cioffi, R., Colangelo, F., Grieco, T., Montagnaro, F., & Santoro, L. (2008). Coal fly ash as raw material for the manufacture of geopolymer based products. Waste Management, 28(2), 416–423. doi:10.1016/j.wasman.2007.02.001
  • Arioz, E., Arioz, O., & Kockar, O. M. (2013). The effect of curing conditions on the properties of geopolymer samples. International Journal of Chemical Engineering and Applications, 4, 423–426.
  • ASTM C496. (2002). Standard test method for splitting strength ASTM International. USA: American Society of Testing Materials.
  • Boke, N., Birch, G. D., Nyale, S. M., & Petrik, L. F. (2015). New synthesis method for the production of coal fly ash based foamed geopolymers. Construction and Building Materials, 75, 189–199. doi:10.1016/j.conbuildmat.2014.07.041
  • Cheng, T. W., & Chiu, J. P. (2003). Fire-resistant geopolymer produced by granulated blast furnace slag. Minerals Engineering, 16(3), 203–210. doi:10.1016/S0892-6875(03)00008-6
  • Davidovits, J., 2002. 30 years of successes and failures in geopolymer applications. Market trends and potential breakthroughs. In: Proceedings of international conference, Melbourne, Australia. 1–16.
  • Davidovits, J. (2011). Geopolymer Chemistry and Applications (3rd ed.). Geopolymer institute, Saint-Quentin France.
  • Egyptian Code of Practice (ECP). (2020). Design and Execution of Reinforced Concrete Structures. HRBC, Egypt: Guide for Laboratory Tests of Concrete Materials.
  • Elimbi, A., Tchakoute, H. K., & Jopwouo, D. N. (2011). Effects of calcination temperature of kaolinite clays on the properties of geopolymer cements. Construction and Building Materials, 25(6), 2805–2812. doi:10.1016/j.conbuildmat.2010.12.055
  • ES 5324/2006. (2006). Standard test methods for sampling and testing of building brick masonry units made from clay. Cairo, Egypt: Egyptian Organization for Standardization and Quality.
  • Gourley, J. T. (2014). Geopolymers in Australia. Journal of the Australian Ceramics Society, 50, 102–110.
  • Habert, D. G., Lacaillerie, J. B., & Roussel, N. (2011). An environmental evaluation of geopolymer based concrete production. Journal of Cleaner Production, 19(11), 1229–1238. doi:10.1016/j.jclepro.2011.03.012
  • Hardjito, D., 2005. Studies on fly ash based geopolymer concrete. Curtin University of Technology, Faculty of Engineering and computing, Ph.D. thesis.
  • Horpibulsuk, S., Munsrakest, V., Udomchai, A., Chinkulkijniwat, A., & Arulrajah, A. (2014). Strength of sustainable non-bearing masonry units manufactured from calcium carbide residue and fly ash. Construction and Building Materials, 71, 210–215. doi:10.1016/j.conbuildmat.2014.08.033
  • Jaarsveld, J. G. S., Deventer, J. S. J., & Lukey, G. C. (2002). The effect of composition and temperature on the properties of fly ash and kaolinite based geopolymers. Construction and Building Materials, 89(1–3), 63–73. doi:10.1016/S1385-8947(02)00025-6
  • Lee, W.-H., Lin, K.-L., Chang, T.-H., Ding, Y.-C., & Cheng, T.-W. (2020). Sustainable development and performance evaluation of marble-waste-based geopolymer concrete. Polymers, 12(9), 1924. doi:10.3390/polym12091924
  • Novais, R., Ascensao, G., Seabra, M., & Labrincha, J. (2016). Waste glass from end of life fluorescent lamps as raw material in geopolymers. Waste Management, 52, 245–255. doi:10.1016/j.wasman.2016.04.003
  • Pappu, A., Saxena, M. S., & Asolekar, R. (2007). Solid wastes generation in India and their recycling potential in building materials. Building and Environment, 42(6), 2311–2320. doi:10.1016/j.buildenv.2006.04.015
  • Radlinski, M. H., & Moncarz, N. (2011). Sustainable concrete: Impacts of existing and emerging materials and technologies on the construction industry.
  • Raja, M. A., Rajalakshmi, S., Valliappan, S., & Dhivya, K. S. (2018). Utilization of granulated marble geopolymer concrete. International Research Journal of Engineering and Technology (IRJET), 4, 12.
  • Safiuddin, M. D., Jumaat, M. Z., Salam, M. A., Islam, M. S., & Hashim, R. (2010). Utilization of solid wastes in construction materials. International Journal of Physical Sciences, 13, 1952–1963.
  • Shukla, A., Gupta, N., & Gupta, A. (2020). Development of green concrete using waste marble dust. Mathura 281406, India: Department of Civil Engineering, GLA University.
  • Swanepoel, J. C., & Strydom, C. A. (2002). Utilization of fly ash in a geopolymeric material, Appl. Geochem, 17, 1143–1148.
  • Turner, L. K., & Collins, F. G. (2013). Carbon dioxide equivalent (CO2) emissions: A comparison between geopolymer and OPC cement concrete. Construction and Building Materials, 43, 125 130. doi:10.1016/j.conbuildmat.2013.01.023
  • Wang, H., Li Yan, H., & Yan, F. (2005). Synthesis and mechanical properties of meta-kaolinite based geopolymer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 268(1–3), 1–6. doi:10.1016/j.colsurfa.2005.01.016
  • Xin, L., Jin-Yu, X., Weimin, L., & Erlei, B. (2014). Effect of alkali-activator types on the dynamic compressive deformation behavior of geopolymer concrete. Materials Letters, 124, 310–312. doi:10.1016/j.matlet.2014.03.102
  • Zhang, Z. H., Zhu, H. J., Zhou, C. H., & Wang, H. (2016). Geopolymer from kaolin in China: An overview. Applied Clay Science, 119, 31–41. doi:10.1016/j.clay.2015.04.023