621
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Accurate prediction of salinity in Chott Djerid shallow aquifers, southern Tunisia: Machine learning model development

ORCID Icon, ORCID Icon & ORCID Icon
Pages 33-47 | Received 20 Sep 2023, Accepted 03 Dec 2023, Published online: 25 Dec 2023

References

  • Abu Salem, H. S., Albadr, M., El Kammar, M. M., Yehia, M. M., & El-Kammar, A. M. (2023). Unraveling the hydrogeochemical evolution and pollution sources of shallow aquifer using multivariate statistical analysis and hydrogeochemical techniques: A case study of the Quaternary aquifer in Beni Suef area, Egypt. Environmental Monitoring and Assessment, 195(670). doi:10.1007/s10661-023-11206-9
  • Akanbi, O. A., Amiri, I. S., & Fazeldehkordi, E. (2015). Feature extraction. A mach. Approach to Phishing Detection and Defense, 45–54. doi:10.1016/B978-0-12-802927-5.00004-6
  • Almeida, A., Loy, A., & Hofmann, H. (2019). ggplot2 compatible quantile-quantile plots in R. The R Journal, 10(2), 248. doi:10.32614/RJ-2018-051
  • Al-Mukhtar, M. (2021). Modeling the monthly pan evaporation rates using artificial intelligence methods: A case study in Iraq. Environmental Earth Sciences, 80(1), 1–14. doi:10.1007/s12665-020-09337-0
  • Al-Waeli, L. K., Sahib, J. H., & Abbas, H. A. (2022). ANN-based model to predict groundwater salinity: A case study of West Najaf–Kerbala region. Open Engineering, 12(1), 120–128. doi:10.1515/eng-2022-0025
  • Banerjee, P., Singh, V. S., Chatttopadhyay, K., Chandra, P. C., & Singh, B. (2011). Artificial neural network model as a potential alternative for groundwater salinity forecasting. Canadian Journal of Fisheries and Aquatic Sciences, 398(3–4), 212–220. doi:10.1016/j.jhydrol.2010.12.016
  • Bashar, A. M., Nozari, H., Marofi, S., Mohamadi, M., & Ahadiiman, A. (2023). Investigation of factors affecting rural drinking water consumption using intelligent hybrid models. Water Science & Engineering, 16(2), 175–183. doi:10.1016/J.WSE.2022.12.002
  • Bradbury, M. H., & Baeyens, B. (2009). Sorption modelling on illite part I: Titration measurements and the sorption of Ni, co, Eu and sn. Geochimica Et Cosmochimica Acta, 73(4), 990–1003. doi:10.1016/j.gca.2008.11.017
  • Corzo, G., & Solomatine, D. (2007). Knowledge-based modularization and global optimization of artificial neural network models in hydrological forecasting. Neural Networks, 20(4), 528–536. doi:10.1016/J.NEUNET.2007.04.019
  • Dassi, L. (2011). Investigation by multivariate analysis of groundwater composition in a multilayer aquifer system from North Africa: A multi-tracer approach. Applied Geochemistry, 26(8), 1386–1398. doi:10.1016/j.apgeochem.2011.05.012
  • Dhaouadi, L., Besser, H., Karbout, N., Wassar, F., & Alomrane, A. R. (2021). Assessment of natural resources in tunisian oases: Degradation of irrigation water quality and continued overexploitation of groundwater. Euro-Mediterranean Journal for Environmental Integration, 6(1), 1–13. doi:10.1007/s41207-020-00234-3
  • Gholami, R., Moradzadeh, A., Maleki, S., Amiri, S., & Hanachi, J. (2014). Applications of artificial intelligence methods in prediction of permeability in hydrocarbon reservoirs. Journal of Petroleum Science & Engineering, 122, 643–656. doi:10.1016/J.PETROL.2014.09.007
  • Guan, C., & Yang, Y. (2020). Research of extraction behavior of heavy metal cd in tea based on backpropagation neural network. Food Science and Nutrition, 8(2), 1067–1074. doi:10.1002/fsn3.1392
  • Hameed, M., Sharqi, S. S., Yaseen, Z. M., Afan, H. A., Hussain, A., & Elshafie, A. (2017). Application of artificial intelligence (AI) techniques in water quality index prediction: A case study in tropical region, Malaysia. Neural Computing & Applications, 28(S1), 893–905. doi:10.1007/s00521-016-2404-7
  • Islam Khan, M. S., Islam, N., Uddin, J., Islam, S., & Nasir, M. K. (2022). Water quality prediction and classification based on principal component regression and gradient boosting classifier approach. Journal of King Saud University - Computer and Information Sciences, 34(8), 4773–4781. doi:10.1016/J.JKSUCI.2021.06.003
  • Jamei, M., Karbasi, M., Malik, A., Abualigah, L., Islam, A. R. M. T., & Yaseen, Z. M. (2022). Computational assessment of groundwater salinity distribution within coastal multi-aquifers of Bangladesh. Scientific Reports, 12(1), 1–28. doi:10.1038/s41598-022-15104-x
  • Kamel, S., Dassi, L., Zouari, K., & Abidi, B. (2005). Geochemical and isotopic investigation of the aquifer system in the Djerid-Nefzaoua basin, southern Tunisia. Environmental Geology, 49(1), 159–170. doi:10.1007/s00254-005-0076-1
  • Keskin, T. E., Düğenci, M., & Kaçaroğlu, F. (2015). Prediction of water pollution sources using artificial neural networks in the study areas of sivas, Karabük and Bartın (Turkey). Environmental Earth Sciences, 73(9), 5333–5347. doi:10.1007/s12665-014-3784-6
  • Khalfi, C., Tarki, M., & Dassi, L. (2021). An appraisal of Chott El jerid brine encroachment in the Tozeur-south shallow aquifer: Geoelectrical and hydrochemical approach. Journal of Applied Geophysics, 190, 104341. doi:10.1016/j.jappgeo.2021.104341
  • Khudhair, Z. S., Zubaidi, S. L., Al-Bugharbee, H., Al-Ansari, N., & Ridha, H. M. (2022). A CPSOCGSA-tuned neural processor for forecasting river water salinity: Euphrates river, Iraq. Cogent Engineering, 9(1). doi:10.1080/23311916.2022.2150121
  • Kraiem, Z., Zouari, K., Chkir, N., & Agoune, A. (2014). Geochemical characteristics of arid shallow aquifers in Chott Djerid, south-western Tunisia. Journal of Hydro-Environment Research, 8(4), 460–473. doi:10.1016/j.jher.2013.06.002
  • Kurtulus, B., & Razack, M. (2010). Modeling daily discharge responses of a large karstic aquifer using soft computing methods: Artificial neural network and neuro-fuzzy. Canadian Journal of Fisheries and Aquatic Sciences, 381(1–2), 101–111. doi:10.1016/J.JHYDROL.2009.11.029
  • Nazari, H., Taghavi, B., & Hajizadeh, F. (2021). Groundwater salinity prediction using adaptive neuro-fuzzy inference system methods: A case study in Azarshahr, Ajabshir and Maragheh plains, Iran. Environmental Earth Sciences, 80(4), 1–10. doi:10.1007/s12665-021-09455-3
  • Rani, R. D., & Sasidhar, P. (2011). Stability assessment and characterization of colloids in coastal groundwater aquifer system at Kalpakkam. Environmental Earth Sciences, 62(2), 233–243. doi:10.1007/s12665-010-0517-3
  • Sabzevar, M. S., Rezaei, A., & Khaleghi, B. (2021). Incremental adaptation strategies for agricultural water management under water scarcity condition in northeast Iran. Regional Sustainability, 2(3), 224–238. doi:10.1016/J.REGSUS.2021.11.003
  • Sahu, S., Gogoi, U., & Nayak, N. C. (2021). Groundwater solute chemistry, hydrogeochemical processes and fluoride contamination in phreatic aquifer of Odisha, India. Geoscience Frontiers, 12(3), 101093. doi:10.1016/j.gsf.2020.10.001
  • Sherriff, B. L., Court, P., Johnston, S., & Stirling, L. (2002). The source of raw materials for roman pottery from Leptiminus, Tunisia. Geoarchaeology: An International Journal, 17(8), 835–861. doi:10.1002/gea.10043
  • Stivaletta, N., Barbieri, R., Picard, C., & Bosco, M. (2009). Astrobiological significance of the sabkha life and environments of southern Tunisia. Planetary & Space Science, 57(5–6), 597–605. doi:10.1016/j.pss.2008.10.002
  • Tao, H., Hameed, M. M., Marhoon, H. A., Zounemat-Kermani, M., Salim, H. … Mehr, A. D. (2022). Groundwater level prediction using machine learning models: A comprehensive review. Neurocomputing, 489, 271–308. doi:10.1016/j.neucom.2022.03.014
  • Tarki, M., Dassi, L., & Jedoui, Y. (2012). Groundwater composition and recharge origin in the shallow aquifer of the Djerid oases, southern Tunisia: Implications of return flow. Hydrological Sciences Journal, 57(4), 790–804. doi:10.1080/02626667.2012.681783
  • Thomas, E. O. (2023). Evaluation of groundwater quality using multivariate, parametric and non-parametric statistics, and GWQI in Ibadan, Nigeria. Water Science, 37(1), 117–130. doi:10.1080/23570008.2023.2221493
  • Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. … Yutani, H. (2019). Welcome to the Tidyverse. Journal of Open Source Software, 4(43), 1686. doi:10.21105/joss.01686
  • Yebdri, L., Hadji, F., Harek, Y., & Marok, A. (2021). Quality assessment of water used for human consumption and irrigation purpose in parts of Tafna watershed (NW Algeria). Environmental Earth Sciences, 80(16), 1–15. doi:10.1007/s12665-021-09805-1
  • Yin, Y. H., Wang, C. F., & Yan, M. Y. (2011). BP neural network in predicting the nano‐titanium dioxide photocatalytic degradation of nitrotoluene wastewater. Chinese Journal of Explosives & Propellants, 34(3), 86–90.
  • Zaqoot, H. A., Hamada, M., & Miqdad, S. (2018). A comparative study of ANN for predicting nitrate concentration in groundwater wells in the southern area of gaza strip. Applied Artificial Intelligence, 32(7–8), 727–744. doi:10.1080/08839514.2018.1506970
  • Zaresefat, M., & Derakhshani, R. (2023). Revolutionizing groundwater management with hybrid AI models: A practical review. Water (Switzerland), 15(9), 1750. doi:10.3390/w15091750
  • Zhu, M., Wang, J., Yang, X., Zhang, Y., Zhang, L., … Ye, L. (2022). A review of the application of machine learning in water quality evaluation. Eco-Environment & Health, 1(2), 107–116. doi:10.1016/j.eehl.2022.06.001