103
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The role of microalgae in effective instream agricultural wastewater treatment

ORCID Icon, , &
Pages 404-414 | Received 12 Mar 2024, Accepted 26 Jun 2024, Published online: 08 Jul 2024

References

  • Abd-Elhamid, H., El-Gohary, E., & Elnag, Z. A. (2017). Safe reuse of treated wastewater for agriculture in Egypt. Conference: Exceed-Swindon Expert Workshop, Water Efficient Cities, Morocco.
  • AbdEllah, R. G. (2020). Water resources in Egypt and their challenges, lake Nasser case study. The Egyptian Journal of Aquatic Research, 46(1), 1–12. https://doi.org/10.1016/j.ejar.2020.03.001
  • Agamy, S., El Saadi, A., & Galal, M. M. (2020). Application of algae to free surface wetlands for effluent reuse. Water and Environment Journal, 35(2), 748–758. https://doi.org/10.1111/wej.12667
  • Ali, S. S., El-Nadi, M. H., Mohamed, S. R., & Hassan, N. A. (2020). Simple treatment of agricultural drains wastewater [ M.Sc. Thesis]. Faculty of Engineering. AIN SHAMS UNIVERSITY.
  • Al-Jabri, H., Das, P., Khan, S., Thaher, M., & AbdulQuadir, M. (2021). Treatment of wastewaters by microalgae and the potential applications of the produced biomass—a review. Water, 13(1), 27. https://doi.org/10.3390/w13010027
  • American Public Health Association American Water Works Association, Water Environment Federation,(1998)Standard methods for the examination of water and wastewaterAndrew D. Eaton, Lenore S. Clesceri, Arnold E. Greenberg19thAmerican Public Health Association
  • Ansari, A. A., Khoja, A. H., Nawar, A., Qayyum, M., & Ali, E. (2017). Wastewater treatment by local microalgae strains for CO2 sequestration and biofuel production. Applied Water Science, 7(7), 4151–4158. https://doi.org/10.1007/s13201-017-0574-9
  • Ashour, M., El Attar, A., S, T., & Rafaat, Y. M. (2009). Water resources management in Egypt. Journal of Engineering Sciences, Assiut University, 37(2), 269–279. https://doi.org/10.21608/jesaun.2009.121215
  • Ateia, M. (2016). In-situ biological water treatment technologies for environmental remediation: a review. Journal of Bioremediation & Biodegradation, 7(3), 1–5. ht tps://1 0.4172/2155-6199.1000348
  • Castellanos-Estupiñan, M. A., Carrillo-Botello, A. M., Rozo-Granados, L. S., Becerra-Moreno, D., García-Martínez, J. B., Urbina-Suarez, N. A., López Barrera, G. L., Barajas-Solano, A. F., Bryan, S. J., & Zuorro, A. (2022). Removal of nutrients and pesticides from agricultural runoff using microalgae and cyanobacteria. Water, 14(4), 558. https://doi.org/10.3390/w14040558
  • El Nadi, M. H., El Hosseiny, O. M., & Ashmawy, H. H. A. (2017). Treat agricultural drain water for reuse needs using algae ponds. Journal of Applied Science and Research, 5(6), 6–14.
  • El-Sheekh, M., El-Dalatony, M. M., Thakur, N., Zheng, Y., & Salama, E. S. (2022). Role of microalgae and cyanobacteria in wastewater treatment: Genetic engineering and omics approaches. International Journal of Environmental Science and Technology, 19(3), 2173–2194. https://doi.org/10.1007/s13762-021-03270-w
  • Fleifle, A., & Allam, A. (2016). Remediation of agricultural drainage water for sustainable reuse. In A. Negm (Ed.), The Nile Delta. The handbook of environmental chemistry (Vol. 55). Springer 297–324.
  • Koul, B., Sharma, K., & Shah, M. P. (2022). Phycoremediation: A sustainable alternative in wastewater treatment (WWT) regime. Environmental Technology & Innovation, 25(1), 1092–1105. https://doi.org/10.1016/j.eti.2021.102040
  • Kumar, N., Hans, S., Verma Srivastava, R., & Srivastava, A. (2020). Acclimatization of microalgae Arthrospira platensis for treatment of heavy metals in Yamuna River. Water Science & Engineering, 13(3), 214–222, ISSN 1674-2370. https://doi.org/10.1016/j.wse.2020.09.005
  • Kumar, R. (2023). Self-purification of natural streams | sewage treatment |waste management. Environmental pollution. https://www.environmentalpollution.in/sewage-treatment/self-purification-of-natural-streams-sewage-treatment-waste-management/5310
  • Marella, T. K., Parine, N. R., & Tiwari, A. (2018). Potential of diatom consortium developed by nutrient enrichment for biodiesel production and simultaneous nutrient removal from waste water. Saudi Journal of Biological Sciences, 25(4), 704–709. https://doi.org/10.1016/j.sjbs.2017.05.011
  • Mohd, N. N., Abu, B. N. S., Lananan, F., Abdul, H. S. H., Lam, S. S., & Jusoh, A. (2015). Treatment of African catfish, carias gariepinus wastewater utilizing phytoremediation of microalgae, Chlorella sp. with aspergillus niger bio-harvesting. Bioresource Technology, 190, 492–498. https://doi.org/10.1016/j.biortech.2015.03.023
  • Moustafa, A. M., El Nadi, M. E., Abdelmomen, M. M., & Nagy, A. M. (2023). Impact of microalgae layer thickness on the treatment performance of drain water. Scientific Reports, 13(1), 20785. https://doi.org/10.1038/s41598-023-48129-x
  • MWRI. (2005). National water resources plan for Egypt 2017 Ministry of water resources and irrigation. http://extwprlegs1.fao.org/docs/pdf/egy147082.pdf
  • Rashed, A. (2002). Biological studies on the snail intermediate hosts of schistosomiasis with a special emphasis on using larval echinostomes as biocontrol agent against larval schistosomes and snails. Journal of the Egyptian Society of Parasitology, 32(3), 775–784. https://doi.org/10.13140/RG.2.1.2483.3368
  • Saeed, M., Hussain, U., Sumrin, N., Shahbaz, A., Noor, A., Bilal, S., Aleya, M., & Iqbal, L. (2022). Microbial bioremediation strategies with wastewater treatment potentialities – a review. Science of the Total Environment, 818, 151754. https://doi.org/10.1016/j.scitotenv.2021.151754
  • Sánchez Zurano, A., Gómez Serrano, C., Acién-Fernández, F. G., Fernández-Sevilla, J. M., & Molina-Grima, E. (2021). Modeling of photosynthesis and respiration rate for microalgae–bacteria consortia. Biotechnology and Bioengineering, 118(2), 952–962. https://doi.org/10.1002/bit.27625
  • Šaulys, V., Survilė, O., & Stankevičienė, R. (2020). An assessment of self-purification in streams. Water, 12(1), 87. https://doi.org/10.3390/w12010087
  • Standard Methods Committee of the American Public Health Association, American Water Works Association, and Water Environment Federation. (1966). 5210 biochemical oxygen demand (BOD). In W. Lipps, T. Baxter, E. Braun-Howland (Eds.), Standard methods for the examination of water and wastewater. APHA Press. https://doi.org/10.2105/SMWW.2882.102
  • Standard Methods Committee of the American Public Health Association, American Water Works Association, and Water Environment Federation. (2023). 5220 chemical oxygen demand (COD). In W. Lipps, T. Baxter, E. Braun-Howland (Eds.), Standard methods for the examination of water and wastewater. APHA Press. https://doi.org/10.2105/SMWW.2882.103
  • Sutherland, D. L., & Ralph, P. J. (2019). Microalgal bioremediation of emerging contamin ants - opportunities and challenges. Water Research, 164, 114921. article no.114921. https://doi.org/10.1016/j.watres.2019.114921
  • Ugya, A. Y., Ajibade, F. O., & Hua, X. (2021). ‘The efficiency of microalgae biofilm in the phycoremediation of water from river kaduna’. Journal of Environmental Management, 295, 113109. ISSN 0301-4797. https://doi.org/10.1016/j.jenvman.2021.113109
  • Villanueva, R. C., Horcasitas, M., Del, C. M., & Vela, H. G. P. (2013). Las microalgas en la biorremediación acuática: Una alternativa biotecnológica. In F.-C. Alarcón (Ed.), Biorremediación de suelos y aguas (Trillas Publishing Company S.A. de).
  • Wollmann, F., Dietze, S., Ackermann, J., Bley, T., Walther, T., Steingroewer, J., & Krujatz, F. (2019). Microalgae wastewater treatment: Biological and technological approaches. Engineering in Life Sciences, 19(12), 860–871. https://doi.org/10.1002/elsc.201900071