207
Views
2
CrossRef citations to date
0
Altmetric
Articles

The effect of topography and elevation on viewsheds in mountain landscapes using geovisualization

ORCID Icon, , &
Pages 44-66 | Received 31 Oct 2017, Accepted 15 May 2018, Published online: 04 Jul 2018

References

  • Battersby, S. E., & Goldsberry, K. P. (2010). Considerations in design of transition behaviors for dynamic thematic maps. Cartographic Perspectives, 65, 16–32. doi:10.14714/CP65.127.
  • Blok, C. A. (2005). Dynamic visualization variables in animation to support monitoring of spatial phenomena. Utrect: Utrecht University.
  • Brabyn, L. (2015). Modelling landscape experience using ‘experions’. Applied Geography, 62, 210–216. doi:10.1016/j.apgeog.2015.04.021.
  • Caldwell, D. R., Mineter, M. J., Dowers, S., & Gittings, B. M. (2003, September). Analysis and visualization of visibility surfaces. In Proceedings of the 7th international conference on GeoComputation, http://www.geocomputation.org/2003/, University of Southampton, UK.
  • Cartwright, W., Crampton, J., Gartner, G., Miller, S., Mitchell, K., Siekierska, E., & Wood, J. (2001). Geospatial information visualization user interface issues. Cartography and Geographic Information Science, 28(1), 45–60. doi: 10.1559/152304001782173961
  • Cartwright, W., & Peterson, M. P. (2007). Multimedia cartography. In W. Cartwright, M. P. Peterson, & G. Gartner (Eds.), Multimedia cartography (pp. 1–10). Berlin Heidelberg: Springer.
  • De Berg, M. (1997). Visualization of TINS. In M. van Kreveld, J. Nievergelt, Th. Roos, & P. Widmayer (Eds.), Algorithmic foundations of geographic information systems (pp. 79–97). Berlin Heidelberg: Springer.
  • De Floriani, L., & Magillo, P. (1999). Intervisibility on terrains. In P. A. Longley, M. F. Goodchild, D. J. Maguire, & D. W. Rhind (Eds.), Geographic information systems: Principles, techniques, management and applications (pp. 543–556). New York: Wiley.
  • De Floriani, L., & Magillo, P. (2003). Algorithms for visibility computation on terrains: A survey. Environment and Planning B: Planning and Design, 30(5), 709–728. doi: 10.1068/b12979
  • De Floriani, L., Marzano, P., & Puppo, E. (1994). Line-of-sight communication on terrain models. International Journal of Geographical Information Systems, 8(4), 329–342. doi: 10.1080/02693799408902004
  • Deng, Y., Wilson, J. P., & Bauer, B. O. (2007). DEM resolution dependencies of terrain attributes across a landscape. International Journal of Geographical Information Science, 21(2), 187–213. doi: 10.1080/13658810600894364
  • Dorling, D., & Openshaw, S. (1992). Using computer animation to visualize space – time patterns. Environment and Planning B: Planning and Design, 19(6), 639–650. doi: 10.1068%2Fb190639
  • Dykes, J., MacEachren, A. M., & Kraak, M. J. (2005). Exploring geovisualization. In J. Dykes, A. M., MacEachren, & M. J. Kraak (Eds.), Exploring geovisualization (pp. 265–291). Oxford: Elsevier.
  • Ehlschlaeger, C. R., Shortridge, A. M., & Goodchild, M. F. (1997). Visualizing spatial data uncertainty using animation. Computers & Geosciences, 23(4), 387–395. doi: 10.1016/S0098-3004(97)00005-8
  • Evans, I. S. (2012). Geomorphometry and landform mapping: What is a landform? Geomorphology, 137(1), 94–106. doi: 10.1016/j.geomorph.2010.09.029
  • Fabrikant, S. I., & Goldsberry, K. (2005, July). Thematic relevance and perceptual salience of dynamic geovisualization displays. In 22th ICA/ACI International cartographic conference, Coruna, Spain (pp. 9–16).
  • Feng, W., Gang, W., Deji, P., Yuan, L., Liuzhong, Y., & Hongbo, W. (2015). A parallel algorithm for viewshed analysis in three-dimensional digital earth. Computers & Geosciences, 75, 57–65. doi: 10.1016/j.cageo.2014.10.012
  • Field, A. (2009). Discovering statistics using SPSS (3rd ed.). London: SAGE.
  • Fisher, P. F. (1993). Algorithm and implementation uncertainty in viewshed analysis. International Journal of Geographical Information Science, 7(4), 331–347. doi: 10.1080/02693799308901965
  • Fisher, P. F. (1996). Extending the applicability of viewsheds in landscape planning. Photogrammetric Engineering and Remote Sensing, 62(11), 1297–1302.
  • Floriani, D., & Magillo, L. (1997). Visibility computations on hierarchical triangulated terrain models. GeoInformatica, 1(3), 219–250. doi: 10.1023/A:1009708413602
  • Florinsky, I. V. (1998). Accuracy of local topographic variables derived from digital elevation models. International Journal of Geographical Information Science, 12(1), 47–62. doi: 10.1080/136588198242003
  • Franklin, W. R., & Ray, C. (1994, May). Higher isn’t necessarily better: Visibility algorithms and experiments. In Advances in GIS research: sixth international symposium on spatial data handling (Vol. 2, pp. 751–770). Taylor & Francis, Edinburgh.
  • Griffin, A. L., MacEachren, A. M., Hardisty, F., Steiner, E., & Li, B. (2006). A comparison of animated maps with static small-multiple maps for visually identifying space-time clusters. Annals of the Association of American Geographers, 96(4), 740–753. doi: 10.1111/j.1467-8306.2006.00514.x
  • Harrower, M. (2003). Tips for designing effective animated maps. Cartographic Perspectives, 44, 63–65.
  • Harrower, M. (2007). The cognitive limits of animated maps. Cartographica: The International Journal for Geographic Information and Geovisualization, 42(4), 349–357. doi:10.3138/carto.42.4.349.
  • Harrower, M., & Fabrikant, S. (2008). The role of map animation for geographic visualization. In M. Dodge, M. McDerby, & M. Turner (Eds.), Geographic visualization: Concepts, tools and applications (pp. 49–65). Chichester: John Wiley.
  • Kienzle, S. (2004). The effect of DEM raster resolution on first order, second order and compound terrain derivatives. Transactions in GIS, 8(1), 83–111. doi: 10.1111/j.1467-9671.2004.00169
  • Kim, Y.-H., Rana, S., & Wise, S. (2004). Exploring multiple viewshed analysis using terrain features and optimisation techniques. Computer and Geosciences, 30, 1019–1032. doi: 10.1016/j.cageo.2004.07.008
  • Klouček, T., Lagner, O., & Šímová, P. (2015). How does data accuracy influence the reliability of digital viewshed models? A case study with wind turbines. Applied Geography, 64, 46–54. doi: 10.1016/j.apgeog.2015.09.005
  • Koussoulakou, A., & Kraak, M. J. (1992). Spatia-temporal maps and cartographic communication. The Cartographic Journal, 29(2), 101–108.
  • Kraak, M. J., & Ormeling, F. (2011). Cartography: Visualization of spatial data. Essex: Pearson Education Limited.
  • Kraak, M.-J., & van de Vlag, D. E. (2007). Understanding spatiotemporal patterns: Visual ordering of space and time. Cartographica: The International Journal for Geographic Information and Geovisualization, 42(2), 153–161. doi: 10.3138/carto.42.2.153
  • Lee, J. (1991). Analyses of visibility sites on topographic surfaces. International Journal of Geographical Information System, 5(4), 413–429. doi: 10.1080/02693799108927866
  • Lee, J. (1994). Digital analysis of viewshed inclusion and topographic features on digital elevation models. Photogrammetric Engineering and Remote Sensing, 60(4), 451–456.
  • Li, Z., Zhu, Q., & Gold, C. (2005). Digital Terrain modeling: Principles and methodology. Boca Raton: CRC Press.
  • Lindsey, G., Han, Y., Wilson, J., & Yang, J. (2006). Neighborhood correlates of urban trail traffic. Journal of Physical Activity and Health, 3(S1), S134–S152. doi: 10.1123/jpah.3.s1.s139
  • Lindsey, G., Wilson, J., Anne Yang, J., & Alexa, C. (2008). Urban greenways, trail characteristics and trail use: Implications for design. Journal of Urban Design, 13(1), 53–79. doi: 10.1080/13574800701804033
  • Llobera, M. (2003). Extending GIS-based visual analysis: The concept of visualscapes. International Journal of Geographical Information Science, 17(1), 25–48. doi: 10.1080/713811741
  • Llobera, M., Wheatley, D., Steele, J., Cox, S., & Parchment, O. (2010). Calculating the inherent visual structure of a landscape (total viewshed) using high-throughput computing. In Beyond the artefact: Digital interpretation of the past: Proceedings of CAA2004, Prato, 13–17 April 2004. (pp. 146–151). Archaeolingua: Budapest, Hungary.
  • Lobben, A. (2003). Classification and application of cartographic animation. The Professional Geographer, 55(3), 318–328. doi: 10.1111/0033-0124.5503016
  • Lonergan, C., Hedley, N., & Clague, J. J. (2015). A visibility-based assessment of tsunami evacuation signs in Seaside, Oregon. Natural Hazards, 78(1), 41–59.
  • Lu, M., Zhang, J. F., Lv, P., & Fan, Z. H. (2008). Least visible path analysis in raster terrain. International Journal of Geographical Information Science, 22(6), 645–656. doi: 10.1080/13658810701602062
  • MacEachren, A. M. (1994). Visualization in modern cartography: Setting the agenda. Visualization in Modern Cartography, 28(1), 1–12.
  • MacEachren, A. M. (1995). How maps work: Representation, visualization and design. New York: Guilford.
  • Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist, 38(1), 43–52. doi:10.1207/S15326985EP3801_6.
  • Misthos, L. M., Nakos, B., Mitropoulos, V., Krassanakis, V., Menegaki, M., & Batzakis, D. V. (2014, October). The effectiveness of propagating viewsheds’ geovisualization from topographically prominent viewroutes. In 10th International Congress of the Hellenic Geographical Society, Thessaloniki (pp. 22–24). http://geolib.geo.auth.gr/digeo/index.php/pgc/article/view/10419
  • Monmonier, M., & Gluck, M. (1994). Focus groups for design improvement in dynamic cartography. Cartography and Geographic Information Systems, 21(1), 37–47.
  • Morrison, J. B., Tversky, B., & Betrancourt, M. (2000). Animation: Does it facilitate learning. AAAI spring symposium on smart graphics, 20–22 March 2000, Stanford, CA, USA (pp. 53–59).
  • Nagy, G. (1994). Terrain visibility. Computers & Graphics, 18(6), 763–773. doi: 10.1016/0097-8493(94)90002-7
  • Nutsford, D., Reitsma, F., Pearson, A. L., & Kingham, S. (2015). Personalising the viewshed: Visibility analysis from the human perspective. Applied Geography, 62, 1–7. doi: 10.1016/j.apgeog.2015.04.004
  • Olaya, V. (2009). Basic land-surface parameters. In T. Hengl, & H. I. Reuter (Eds.), Geomorphometry: Concepts, software, applications (pp. 141–169). Amsterdam: Elsevier.
  • Open Topography (NSF). (2013). Find LiDAR topography data. Retrieved from http://opentopo.sdsc.edu/gridsphere/gridsphere?cid=datasets.
  • O’Sullivan, D., & Turner, A. (2001). Visibility graphs and landscape visibility analysis. International Journal of Geographical Information Science, 15(3), 221–237. doi: 10.1080/13658810151072859
  • Patton, D. K., & Cammack, R. G. (1996). An examination of the effects of task type and map complexity on sequenced and static choropleth maps. In C. H. Wood, & C. P. Keller (Eds.), Cartographic design: Theoretical and practical perspectives (pp. 237&252). Chichester: John Wiley & Sons.
  • Peterson, M. P. (1995). Interactive and animated cartography. Upper Saddle River: Prentice Hall.
  • Peucker, T. K., & Douglas, D. H. (1975). Detection of surface-specific points by local parallel processing of discrete terrain elevation data. Computer Graphics and Image Processing, 4(4), 375–387. doi: 10.1016/0146-664X(75)90005-2
  • Pfaltz, J. L. (1976). Surface networks. Geographical Analysis, 8, 77–93. doi: 10.1111/j.1538-4632.1976.tb00530.x
  • Rana, S. (2003). Fast approximation of visibility dominance using topographic features as targets and the associated uncertainty. Photogrammetric Engineering and Remote Sensing, 69(8), 881–888. doi: 10.14358/PERS.69.8.881
  • Rana, S., & Dykes, J. (2003). A framework for augmenting the visualization of dynamic raster surfaces. Information Visualization, 2(2), 126–139.
  • Riggs, P. D., & Dean, D. J. (2007). An investigation into the causes of errors and inconsistencies in predicted viewsheds. Transactions in GIS, 11(2), 175–196. doi: 10.1111/j.1467-9671.2007.01040.x
  • Slocum, T. A., McMaster, R. B., Kessler, F. C., & Howard, H. H. (2009). Thematic cartography and geovisualization. Upper Saddle River: Pearson Prentice Hall.
  • Slocum, T. A., Robeson, S. H., & Egbert, S. L. (1990). Traditional versus sequenced choropleth maps/an experimental investigation. Cartographica: The International Journal for Geographic Information and Geovisualization, 27(1), 67–88. doi: 10.3138/CG7N-0158-1537-6177
  • Stucky, J. L. D. (1998). On applying viewshed analysis for determining least-cost paths on digital elevation models. International Journal of Geographical Information Science, 12(8), 891–905. doi: 10.1080/136588198241554
  • Tabik, S., Zapata, E. L., & Romero, L. F. (2013). Simultaneous computation of total viewshed on large high resolution grids. International Journal of Geographical Information Science, 27(4), 804–814. doi: 10.1080/13658816.2012.677538
  • Tversky, B., Morrison, J. B., & Betrancourt, M. (2002). Animation: Can it facilitate? International Journal of Human-Computer Studies, 57(4), 247–262. doi: 10.1006/ijhc.2002.1017
  • Warntz, W. (1966). The topology of a socio-economic terrain and spatial flows. Papers of the Regional Science Association, 17(1), 47–61.
  • Wheatley, D. (1995). Cumulative viewshed analysis: a GIS-based method for investigating intervisibility, and its archaeological application. Archaeology and geographical information systems: a European perspective (pp. 171–185).
  • Wilson, J., Lindsey, G., & Liu, G. (2008). Viewshed characteristics of urban pedestrian trails, Indianapolis, Indiana, USA. Journal of Maps, 4(1), 108–118.
  • Wilson, J. P. (2012). Digital terrain modeling. Geomorphology, 137(1), 107–121. doi: 10.1016/j.geomorph.2011.03.012

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.