213
Views
5
CrossRef citations to date
0
Altmetric
Articles

Using stroke and mesh to recognize building group patterns

ORCID Icon & ORCID Icon
Pages 71-98 | Received 28 Feb 2018, Accepted 07 Dec 2018, Published online: 29 Apr 2019

References

  • Ai, T., & Zhang, X. (2007). The aggregation of urban building clusters based on the skeleton partitioning of gap space. In Lecture notes in geoinformation and cartography (pp. 153–170). doi: 10.1007/978-3-540-72385-1_9
  • Amato, N. (1994). Determining the separation of simple polygons. International Journal of Computational Geometry & Applications, 4(August), 457–474. doi: 10.1142/S0218195994000240
  • Anders, K. (2003). A hierarchical graph-clustering approach to find groups of objects. In Proceedings 5th workshop on progress in automated map generalization (pp. 1–8). Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.10.9973&rep=rep1&type=pdf
  • Anders, K., & Sester, M. (2000). Parameter-free cluster detection in spatial database and its application to typification. ISPRS, XXXIII.
  • Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J. M., & Perona, I. (2013). An extensive comparative study of cluster validity indices. Pattern Recognition, 46(1), 243–256. doi: 10.1016/j.patcog.2012.07.021
  • Boffet, A., Rocca Serra, S., & Serra, S. R. (2001). Identification of spatial structures within urban blocks for town characterisation. Proceedings of the 20th International Cartographic Conference, 3, 1974–1983.
  • Brinkhoff, T., Kriegel, H.-P., Schneider, R., & Braun, A. (1995, December 1–2). Measuring the complexity of polygonal objects. In Proceedings of the 3rd {ACM} international workshop on advances in geographic information systems, Baltimore, MD, in Conjunction with {CIKM} (p. 109). doi:10.1.1.73.1045&rep
  • Cetinkaya, S., Basaraner, M., & Burghardt, D. (2015). Proximity-based grouping of buildings in urban blocks: A comparison of four algorithms. Geocarto International, 30(6), 618–632. doi: 10.1080/10106049.2014.925002
  • Christophe, S., & Ruas, A. (2002). Detecting building alignments for generalisation purposes. Advances in Spatial Data Handling, 419–432. doi: 10.1007/978-3-642-56094-1_31
  • Deng, M., Tang, J., Liu, Q., & Wu, F. (2017). Recognizing building groups for generalization: A comparative study. Cartography and Geographic Information Science, 45, 187–204. doi: 10.1080/15230406.2017.1302821
  • Du, S., Luo, L., Cao, K., & Shu, M. (2016). Extracting building patterns with multilevel graph partition and building grouping. ISPRS Journal of Photogrammetry and Remote Sensing, 122, 81–96. doi: 10.1016/j.isprsjprs.2016.10.001
  • Du, S., Shu, M., & Feng, C.-C. (2016). Representation and discovery of building patterns: A three-level relational approach. International Journal of Geographical Information Science, 30(6), 1161–1186. doi: 10.1080/13658816.2015.1108421
  • Duchêne, C., Bard, S., Barillot, X., Ruas, A., Trévisan, J., & Holzapfel, F. (2003, April). Quantitative and qualitative description of building orientation. In Fifth workshop on progress in automated map generalization (pp. 1–10). Retrieved from http://www.geo.unizh.ch/ICA/docs/paris2003/papers/duchene_et_al_v1.pdf
  • He, X., Zhang, X., & Xin, Q. (2018). Recognition of building group patterns in topographic maps based on graph partitioning and random forest. ISPRS Journal of Photogrammetry and Remote Sensing, 136, 26–40. doi: 10.1016/j.isprsjprs.2017.12.001
  • Li, Z., Yan, H., Ai, T., & Chen, J. (2004). Automated building generalization based on urban morphology and Gestalt theory. International Journal of Geographical Information Science, 18(5), 513–534. doi: 10.1080/13658810410001702021
  • Qi, H., & Li, Z. (2008). An approach to building grouping based on hierarchical constraints. The XXI congress of the international society for photogrammetry and remote sensing (ISPRS 2008), Beijing, China, pp. 449–454.
  • Regnauld, N. (1996). Recognition of building clusters for generalization. In 7th International symposium on spatial data handling (pp. 1–14).
  • Regnauld, N. (2001). Contextual building typification in automated map generalization. Algorithmica, 30, 312–333. doi: 10.1007/s00453-001-0008-8
  • Thomson, R. C., & Richardson, D. E. (1999). The ‘good continuation’ principle of perceptual organization applied to the generalization of road networks. In Proceedings of the ICA 19th international cartographic conference (pp. 14–21).
  • Wang, W., Du, S., Guo, Z., & Luo, L. (2015). Polygonal clustering analysis using multilevel graph-partition. Transactions in GIS, 19(5), 716–736. doi: 10.1111/tgis.12124
  • Weibel, R. (1995). Introduction: Map generalization in the context of digital systems. Cartography and Geographic Information Systems, 22(4), 259–263. doi:10.1080/152304095782540285 doi: 10.1559/152304095782540285
  • Wu, B., Yu, B., Wu, Q., Chen, Z., Yao, S., Huang, Y., & Wu, J. (2017). An extended minimum spanning tree method for characterizing local urban patterns. International Journal of Geographical Information Science, 32(3), 450–475. doi: 10.1080/13658816.2017.1384830
  • Yan, H., Weibel, R., & Yang, B. (2008). A multi-parameter approach to automated building grouping and generalization. GeoInformatica, 12(1), 73–89. doi: 10.1007/s10707-007-0020-5
  • Yang, W. (2008). Identify building patterns. In The international archives of the photogrammetry, remote sensing and spatial information sciences (Vol. XXXVII, Part B2).
  • Yu, W., Ai, T., Liu, P., & Cheng, X. (2016). The analysis and measurement of building patterns using texton co-occurrence matrices. International Journal of Geographical Information Science, 1–22. doi: 10.1080/13658816.2016.1265121
  • Zhang, X., Ai, T., & Stoter, J. (2009). A Voronoi-like model of spatial autocorrelation for characterizing spatial patterns in vector data. In 6th International symposium on voronoi diagrams in science and engineering, ISVD 2009 (pp. 118–126). doi: 10.1109/ISVD.2009.19
  • Zhang, X., Ai, T., & Stoter, J. (2012). Characterization and detection of building patterns in cartographic data: Two algorithms. In Lecture notes in geoinformation and cartography (pp. 93–107). doi: 10.1007/978-3-642-25926-5_8
  • Zhang, X., Ai, T., Stoter, J., Kraak, M. J., & Molenaar, M. (2013). Building pattern recognition in topographic data: Examples on collinear and curvilinear alignments. GeoInformatica, 17(1), 1–33. doi: 10.1007/s10707-011-0146-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.