1,097
Views
35
CrossRef citations to date
0
Altmetric
Articles

Transferring multiscale map styles using generative adversarial networks

ORCID Icon, ORCID Icon & ORCID Icon
Pages 115-141 | Received 08 Feb 2019, Accepted 03 May 2019, Published online: 23 May 2019

References

  • Armstrong, M. P., & Xiao, N. (2018). Retrospective deconstruction of statistical maps: A choropleth case study. Annals of the American Association of Geographers, 108(1), 179–203. doi: 10.1080/24694452.2017.1356698
  • Brewer, C. A., & Buttenfield, B. P. (2007). Framing guidelines for multi-scale map design using databases at multiple resolutions. Cartography and Geographic Information Science, 34(1), 3–15. doi: 10.1559/152304007780279078
  • Buckley, A., & Jenny, B. (2012). Letter from the guest editors. Cartographic Perspectives.
  • Chiang, Y.-Y. (2016). Unlocking textual content from historical maps-potentials and applications, trends, and outlooks. In International conference on recent trends in image processing and pattern recognition (pp. 111–124). Bidar, IN: Springer.
  • Christophe, S., & Hoarau, C. (2012). Expressive map design based on pop art: Revisit of semiology of graphics? Cartographic Perspectives, 73, 61–74.
  • Christophe, S., Duménieu, B., Turbet, J., Hoarau, C., Mellado, N., Ory, J., & Brédif, M. (2016). Map style formalization: Rendering techniques extension for cartography. Proceedings of the joint symposium on computational aesthetics and sketch based interfaces and modeling and non-photorealistic animation and rendering (pp. 59–68). Eurographics Association.
  • DeLucia, A., & Black, T. (1987). A comprehensive approach to automatic feature generalization. Proceedings of the 13th international cartographic conference, Morelia, Mexico (pp. 168–191).
  • Deng, X., Zhu, Y., & Newsam, S. (2018). What is it like down there? generating dense ground-level views and image features from overhead imagery using conditional generative adversarial networks. preprint arXiv:1806.05129.
  • Duan, W., Chiang, Y.-Y., Knoblock, C. A., Jain, V., Feldman, D., Uhl, J. H., & Leyk, S. (2017). Automatic alignment of geographic features in contemporary vector data and historical maps. Proceedings of the 1st workshop on artificial intelligence and deep learning for geographic knowledge discovery (pp. 45–54). Los Angeles, CA: ACM.
  • Evans, M. R., Mahmoody, A., Yankov, D., Teodorescu, F., Wu, W., & Berkhin, P. (2017). Livemaps: Learning geo-intent from images of maps on a large scale. Proceedings of the 25th ACM SIGSPATIAL international conference on advances in geographic information systems (p. 31). Los Angeles, CA: ACM.
  • Foerster, T., Stoter, J., & Köbben, B. (2007). Towards a formal classification of generalization operators. Proceedings of the 23rd international cartographic conference, Moscow, Russia (pp. 4–10).
  • Ganguli, S., Garzon, P., & Glaser, N. (2019). GeoGAN: A conditional GAN with reconstruction and style loss to generate standard layer of maps from satellite images. Retrieved from https://arxiv.org/pdf/1902.05611.pdf
  • Gao, S., Janowicz, K., & Zhang, D. (2017). Designing a map legend ontology for searching map content. Advances in Ontology Design and Patterns, 32, 119–130.
  • Gatys, L. A., Ecker, A. S., & Bethge, M. (2016). Image style transfer using convolutional neural networks. Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA (pp. 2414–2423).
  • Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning. Cambridge: MIT Press.
  • Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., …, & Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing systems (pp. 2672–2680).
  • Hu, Y., Gao, S., Newsam, S., & Lunga, D. (2018). GeoAI 2018 workshop report the 2nd ACM SIGSPATIAL international workshop on GeoAI. SIGSPATIAL Special, 10(3), 16–16. doi: 10.1145/3307599.3307609
  • Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. Proceedings of the IEEE conference on computer vision and pattern recognition, Honolulu, HI, USA (pp. 4700–4708).
  • Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A. (2017). Image-to-image translation with conditional adversarial networks. Proceedings of the IEEE conference on computer vision and pattern recognition, Honolulu, HI, USA (pp. 1125–1134).
  • Kent, A. J., & Vujakovic, P. (2009). Stylistic diversity in european state 1: 50 000 topographic maps. The Cartographic Journal, 46(3), 179–213. doi: 10.1179/000870409X12488753453453
  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger, (Eds.), Advances in neural information processing systems 25 (pp. 1097–1105). Lake Tahoe, Nevada: Curran Associates, Inc.
  • Law, S., Seresinhe, C. I., Shen, Y., & Gutierrez-Roig, M. (2018). Street-frontage-net: Urban image classification using deep convolutional neural networks. International Journal of Geographical Information Science, 1–27. doi: 10.1080/13658816.2018.1555832
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436. doi: 10.1038/nature14539
  • Li, W., & Hsu, C.-Y. (2018). Automated terrain feature identification from remote sensing imagery: A deep learning approach. International Journal of Geographical Information Science, 1–24. doi: 10.1080/13658816.2018.1542697
  • Mackaness, W. A., Ruas, A., & Sarjakoski, L. T. (2011). Generalisation of geographic information: Cartographic modelling and applications. Amsterdam: Elsevier.
  • Maggiori, E., Tarabalka, Y., Charpiat, G., & Alliez, P. (2017). Convolutional neural networks for large-scale remote-sensing image classification. IEEE Transactions on Geoscience and Remote Sensing, 55(2), 645–657. doi: 10.1109/TGRS.2016.2612821
  • Mao, H., Hu, Y., Kar, B., Gao, S., & McKenzie, G. (2017). GeoAI 2017 workshop report: The 1st ACM SIGSPATIAL international workshop on geoAI:@ AI and deep learning for geographic knowledge discovery. SIGSPATIAL Special, 9(3), 25–25. doi: 10.1145/3178392.3178408
  • McMaster, R. B., & Shea, K. S. (1992). Generalization in digital cartography. Washington, DC: Association of American Geographers Washington.
  • Mirza, M., & Osindero, S. (2014). Conditional generative adversarial nets. preprint arXiv:1411.1784.
  • Muehlenhaus, I. (2012). If looks could kill: The impact of different rhetorical styles on persuasive geocommunication. The Cartographic Journal, 49(4), 361–375. doi: 10.1179/1743277412Y.0000000032
  • Peterson, M. P. (2011). Travels with ipad maps. Cartographic Perspectives, 68, 75–82. doi: 10.14714/CP68.9
  • Raposo, P. (2017). Scale and generalization. The geographic information science & technology body of knowledge (4th quarter 2017 edition), John P. Wilson.
  • Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., & Lee, H. (2016). Generative adversarial text to image synthesis. preprint arXiv:1605.05396.
  • Regnauld, N., & McMaster, R. B. (2007). A synoptic view of generalisation operators. In W. Mackaness, A. Ruas, & L. T. Sarjakoski (Eds.), Generalisation of geographic information (pp. 37–66). Amsterdam: Elsevier Ltd.
  • Roth, R. E., Brewer, C. A., & Stryker, M. S. (2011). A typology of operators for maintaining legible map designs at multiple scales. Cartographic Perspectives, 68, 29–64. doi: 10.14714/CP68.7
  • Roth, R. E., Donohue, R. G., Sack, C. M., Wallace, T. R., & Buckingham, T. M. A. (2015). A process for keeping pace with evolving web mapping technologies. Cartographic Perspectives, 78, 25–52. doi: 10.14714/CP78.1273
  • Shen, Y., Ai, T., Wang, L., & Zhou, J. (2018). A new approach to simplifying polygonal and linear features using superpixel segmentation. International Journal of Geographical Information Science, 32(10), 2023–2054. doi: 10.1080/13658816.2018.1485926
  • Peterson, M. P. (2014). Mapping in the cloud. New York, NY: The Guilford Press.
  • Srivastava, S., Vargas-Muñoz, J. E., Swinkels, D., & Tuia, D. (2018). Multilabel building functions classification from ground pictures using convolutional neural networks. Proceedings of the 2nd ACM SIGSPATIAL international workshop on AI for geographic knowledge discovery (pp. 43–46). ACM.
  • Stanislawski, L. V., Buttenfield, B. P., Bereuter, P., Savino, S., & Brewer, C. A. (2014). Generalisation operators. In Dirk Burghardt, Cécile Duchêne, & William Mackaness (Eds.), Abstracting geographic information in a data rich world (pp. 157–195). Cham: Springer.
  • Stoter, J. (2005). Generalisation within nma's in the 21st century. Proceedings of the international cartographic conference, A Coruña, Spain.
  • Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, NV (pp. 2818–2826).
  • VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y. (2018). Emerging trends in geospatial artificial intelligence (geoAI): Potential applications for environmental epidemiology. Environmental Health, 17(1), 40. doi: 10.1186/s12940-018-0386-x
  • Xu, C., & Zhao, B. (2018). Satellite image spoofing: Creating remote sensing dataset with generative adversarial networks. 10th International conference on geographic information science (GIScience 2018), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Melbourne, Australia.
  • Zhang, F., Wu, L., Zhu, D., & Liu, Y. (2019). Social sensing from street-level imagery: A case study in learning spatio-temporal urban mobility patterns. ISPRS Journal of Photogrammetry and Remote Sensing, 153, 48–58. doi: 10.1016/j.isprsjprs.2019.04.017
  • Zhang, F., Zhou, B., Liu, L., Liu, Y., Fung, H. H., Lin, H., & Ratti, C. (2018). Measuring human perceptions of a large-scale urban region using machine learning. Landscape and Urban Planning, 180, 148–160. doi: 10.1016/j.landurbplan.2018.08.020
  • Zhou, X., Li, W., Arundel, S. T., & Liu, J. (2018). Deep convolutional neural networks for map-type classification. preprint arXiv:1805.10402.
  • Zhu, D., Cheng, X., Zhang, F., Yao, X., Gao, Y., & Liu, Y. (2019). Spatial interpolation using conditional generative adversarial neural networks. International Journal of Geographical Information Science, 1–24. doi: 10.1080/13658816.2019.1599122
  • Zhu, J.-Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. Proceedings of the IEEE international conference on computer vision, Honolulu, HI (pp. 2223–2232).
  • Zou, Q., Ni, L., Zhang, T., & Wang, Q. (2015). Deep learning based feature selection for remote sensing scene classification. IEEE Geoscience and Remote Sensing Letters, 12(11), 2321–2325. doi: 10.1109/LGRS.2015.2475299

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.