90
Views
6
CrossRef citations to date
0
Altmetric
Articles

Regression modeling of reduction in spatial accuracy and detail for multiple geometric line simplification procedures

ORCID Icon & ORCID Icon
Pages 47-70 | Received 26 Mar 2018, Accepted 03 May 2019, Published online: 29 Jul 2019

References

  • Ai, T. (2007). The drainage network extraction from contour lines for contour line generalization. ISPRS Journal of Photogrammetry and Remote Sensing, 62(2), 93–103. doi: 10.1016/j.isprsjprs.2007.04.002
  • Ai, T., Ke, S., Yang, M., & Li, J. (2017). Envelope generation and simplification of polylines using Delaunay triangulation. International Journal of Geographical Information Science, 31(2), 297–319. doi: 10.1080/13658816.2016.1197399
  • Ai, T., Zhou, Q., Zhang, X., Huang, Y., & Zhou, M. (2014). A simplification of Ria coastline with geomorphologic characteristics preserved. Marine Geodesy, 37(2), 167–186. doi: 10.1080/01490419.2014.903215
  • Bayer, T. (2009). Automated building simplification using a recursive approach. In Advances in cartography and GIScience., (Vol. 1, pp. 121–146). Berlin, Heidelberg: Springer.
  • Beard, K. (1991). Constraints on rule formation. In Map generalisation: Making rules for knowledge representation (pp. 121–135). UK: Longman Scientific & Technical.
  • Biljecki, F., Ledoux, H., Stoter, J., & Zhao, J. (2014). Formalisation of the level of detail in 3D city modelling. Computers, Environment and Urban Systems, 48, 1–15. doi: 10.1016/j.compenvurbsys.2014.05.004
  • Buttenfield, B. P. (1987). Automating the identification of cartographic lines. Cartography and Geographic Information Science, 14(1), 7–20.
  • Buttenfield, B. P. (1991). A rule for describing line feature geometry. In B. P. Buttenfield, and R. B. McMaster (Eds.), Map generalization: Making rules for knowledge representation, (pp. 150–171). London: Longman Scientific and Technical.
  • Cheng, X., Wu, H., Ai, T., & Yang, M. (2017). Detail resolution: A new model to describe level of detail information of vector line data. In C. Zhou, F. Su, F. Harvey, and J. Xu (Eds.), Spatial data handling in big data era, advances in geographic information science, (pp. 167–177). Singapore: Springer.
  • Damen, J., & Spaan, B. (2008). High quality building generalization by extending the morphological operators. In 12th ICA workshop on generalisation and multiple representation, 20–21 June 2008, (pp. 1–12). France: Montpellier.
  • DCW (1992). Digital Chart of the World (DCW). Technical Report MIL-D-89009. Fairfax, VA: Defense Mapping Agency.
  • Douglas, D., & Peucker, T. (1973). Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. The Canadian Cartographer, 10(2), 112–122. doi: 10.3138/FM57-6770-U75U-7727
  • Dubuisson, M.-P., & Jain, A. (1994). A modified hausdorff distance for object matching. In Proceedings of 12th international conference on pattern recognition (Vol. 1, pp. 566–568). IEEE Comput. Soc. Press.
  • Dutton, G. (1999). Scale, sinuosity, and point selection in digital line generalization. Cartography and Geographic Information Science, 26(1), 33–54. doi: 10.1559/152304099782424929
  • Foerster, T., Stoter, J., & Lemmens, R. (2007). Towards automatic web-based generalisation processing: A case study. In Proceedings of the 11th ICA workshop on generalisation and multiple representation, Moscow, Russia, 2–3 August 2007, pp. 1–10.
  • Jenks, G. F. (1981). Lines, computers, and human frailties. Annals of the Association of American Geographers, 71(1), 1–10. doi: 10.1111/j.1467-8306.1981.tb01336.x
  • Jones, C. B., & Abraham, I. (1986). Design considerations for a scale-independent database. In Proceedings of second international symposium on spatial data handling, Seattle (pp. 384–398), Washington, Seattle: International Geographical Union.
  • Jones, C. B., Kidner, D. B., Luo, L. Q., Bundy, G. L., & Ware, J. M. (1996). Database design for a multi-scale spatial information system. International Journal of Geographical Information Systems, 10(8), 901–920. doi: 10.1080/02693799608902116
  • Kilpeläinen, T. (2000). Maintenance of multiple representation databases for topographic data. The Cartographic Journal, 37(2), 101–107. doi: 10.1179/caj.2000.37.2.101
  • Kolbe, T. H., Gröger, G., & Plümer, L. (2005). CityGML: Interoperable access to 3D city models. In P. van Oosterom, S. Zlatanova, and E. M. Fendel, (Eds.), Geo-Information for disaster management, (pp. 883–899). Berlin, Heidelberg: Springer.
  • Lemmens, M. (2011). Quality of geo-information. In Geo-Information, (pp. 211–227). Dordrecht, Netherlands: Springer.
  • Li, Z. (2006). Algorithmic foundation of multi-scale spatial representation. Boca Raton, FL: CRC Press.
  • Li, Z., & Openshaw, S. (1992). Algorithms for automated line generalization based on a natural principle of objective generalization. International Journal of Geographical Information Systems, 6(5), 373–389. doi: 10.1080/02693799208901921
  • Mackaness, W. A., & Ruas, A. (2007). Evaluation in the map generalisation process. In Generalisation of geographic information: Cartographic modelling and applications (pp. 89–111). Amsterdam: Elsevier.
  • McMaster, R. B. (1986). A statistical analysis of mathematical measures for linear simplification. Cartography and Geographic Information Science, 13(2), 103–116.
  • McMaster, R. B. (1987). Automated line generalization. Cartographica: The International Journal for Geographic Information and Geovisualization, 24(2), 74–111. doi: 10.3138/3535-7609-781G-4L20
  • Meng, L., & Forberg, A. (2007). 3D Building generalisation. In Generalisation of geographic information: Cartographic modelling and applications (pp. 211–231). Amsterdam: Elsevier.
  • Mitropoulos, V., & Nakos, B. (2011). A methodology on natural occurring lines segmentation and generalization. In Proceedings of 14th ICA workshop on generalisation and multiple representation, Paris, France (p. 7), Paris, France.
  • Mustiere, S. (2005). Cartographic generalization of roads in a local and adaptive approach: A knowledge acquisition problem. International Journal of Geographical Information Science, 19(8–9), 937–955. doi: 10.1080/13658810509161245
  • Park, W., & Yu, K. (2011). Hybrid line simplification for cartographic generalization. Pattern Recognition Letters, 32(9), 1267–1273. doi: 10.1016/j.patrec.2011.03.013
  • Peters, R., Ledoux, H., & Meijers, M. (2014). A Voronoi-based approach to generating depth-contours for hydrographic charts. Marine Geodesy, 37(2), 145–166. doi: 10.1080/01490419.2014.902882
  • Plazanet, C., Affholder, J.-G., & Fritsch, E. (1995). The importance of geometric modeling in linear feature generalization. Cartography and Geographic Information Science, 22(4), 291–305. doi: 10.1559/152304095782540276
  • Raposo, P. (2013). Scale-specific automated line simplification by vertex clustering on a hexagonal tessellation. Cartography and Geographic Information Science, 40(5), 427–443. doi: 10.1080/15230406.2013.803707
  • Ruas, A., & Bianchin, A. (2002). Echelle et niveau de detail. In A. Ruas (Ed.) Generalisation et representation multiple (pp. 25–44). Paris: Hermes Lavoisier.
  • Samsonov, T. E., & Yakimova, O. P. (2017). Shape-adaptive geometric simplification of heterogeneous line datasets. International Journal of Geographical Information Science, 31(8), 1485–1520. doi: 10.1080/13658816.2017.1306864
  • Sarjakoski, T. L. (2007). Conceptual models of generalisation and multiple representation. In Generalisation of geographic information: Cartographic modelling and applications (pp. 11–35). Amsterdam: Elsevier.
  • Shi, W., & Cheung, C. (2006). Performance evaluation of line simplification algorithms for vector generalization. The Cartographic Journal, 43(1), 27–44. doi: 10.1179/000870406X93490
  • Song, J., & Miao, R. (2016). A novel evaluation approach for line simplification algorithms towards vector map visualization. ISPRS International Journal of Geo-Information, 5(12), 223. doi: 10.3390/ijgi5120223
  • Stoter, J., Zhang, X., Stigmar, H., & Harrie, L. (2014). Evaluation in generalisation. In Abstracting geographic information in a data rich world: Methodologies and applications of map generalisation (pp. 259–297). Cham: Springer.
  • Touya, G. (2013). Detecting level-of-detail inconsistencies in volunteered geographic information data sets. Cartographica: The International Journal for Geographic Information and Geovisualization, 48(2), 134–143. doi: 10.3138/carto.48.2.1836
  • Touya, G., & Baley, M. (2017). Level of details harmonization operations in openstreetmap based large scale maps. In Citizen empowered mapping (Vol. 18, pp. 3–25). Cham: Springer International Publishing AG.
  • Touya, G., Duchêne, C., & Ruas, A. (2010). Collaborative generalisation: Formalisation of generalisation knowledge to orchestrate different cartographic generalisation processes. In Theories and methods of spatio-temporal reasoning in geographic space (pp. 264–278). Berlin, Heidelberg: Springer.
  • Touya, G., & Reimer, A. (2015). Inferring the scale of openstreetmap features. In OpenStreetMap in GIScience (pp. 81–99). Springer International Publishing.
  • Veregin, H. (2000). Quantifying positional error induced by line simplification. International Journal of Geographical Information Science, 14(2), 113–130. doi: 10.1080/136588100240877
  • Visvalingam, M. (2016). The Visvalingam algorithm: Metrics, measures and heuristics. The Cartographic Journal, 53(3), 242–252. doi: 10.1080/00087041.2016.1151097
  • Visvalingam, M., & Whyatt, J. D. (1993). Line generalisation by repeated elimination of points. The Cartographic Journal, 30(1), 46–51. doi: 10.1179/caj.1993.30.1.46
  • Wang, Z., & Müller, J.-C. (1998). Line generalization based on analysis of shape characteristics. Cartography and Geographic Information Science, 25(1), 3–15. doi: 10.1559/152304098782441750
  • Wang, Z., & Muller, J. C. (1993). Complex coastline generalization. Cartography and Geographic Information Science, 20(2), 96–106. doi: 10.1559/152304093782610333
  • Weibel, R. (1996). A typology of constraints to line simplification. In Proceedings of 7th international symposium on spatial data handling, 12–16 August 1996, Delft, The Netherlands, pp. 533–546.
  • Zhao, Z., & Saalfeld, A. (1997). Linear-time sleeve-fitting polyline. In Autocarto 13, ACSM/ASPRS'97 technical papers, Seattle, Washington, pp. 214–223.
  • Zhou, S., & Jones, C. B. (2003). A multi-representation spatial data model. In G. Goos, J. Hartmanis, J. van Leeuwen, T. Hadzilacos, Y. Manolopoulos, J. Roddick, and Y. Theodoridis (Eds.), Advances in spatial and temporal databases (Vol. 2750, pp. 394–411). Berlin, Heidelberg: Springer.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.