186
Views
9
CrossRef citations to date
0
Altmetric
Articles

Variable DEM generalization using local entropy for terrain representation through scale

ORCID Icon
Pages 99-120 | Received 27 Dec 2017, Accepted 26 Jun 2019, Published online: 16 Dec 2019

References

  • Abutaleb, A. S. (1989). Automatic thresholding of gray-level pictures using two-dimensional entropy. Computer Vision, Graphics, and Image Processing, 47, 22–32.
  • Ai, T. (2007, June). The drainage network extraction from contour lines for contour line generalization. ISPRS Journal of Photogrammetry and Remote Sensing, 62(2), 93–103.
  • Ai, T., & Li, J. (2010). A DEM generalization by minor valley branch detection and grid filling. ISPRS Journal of Photogrammetry and Remote Sensing, 65(2), 198–207.
  • Bilgi, S., & Ipbuker, C. (2011). Optimization of geographic data using entropy. In Proceedings of the international cartographic conference. International Cartographic Association.
  • Bjørke, J. T. (1996). Framework for entropy-based map evaluation. Cartography and Geographic Information Systems, 23(2), 78–95.
  • Bjørke, J. T. (2012). Exploration of information: Theoretic arguments for the limited amount of information in a map. Cartography and Geographic Information Science, 39(2), 88–97.
  • Bjørke, J. T., & Aasgaard, R. (1990). Cartographic zoom. In 4th international symposium on spatial data handling (pp. 345–353). Zurich.
  • Bjørke, J. T., & Midtbo, T. (1993). Generalization of digital surface models. In International cartographic conference (pp. 361–371). Cologne, Germany.
  • Bjørke, J. T., & Nilsen, S. (2002, May). Efficient representation of digital terrain models: Compression and spatial decorrelation techniques. Computers & Geosciences, 28(4), 433–445.
  • Bjørke, J. T., & Nilsen, S. (2003, October). Wavelets applied to simplification of digital terrain models. International Journal of Geographical Information Science, 17(7), 601–621.
  • Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65, 2–16.
  • Blaschke, T., Lang, S., & Hay, G. J. (Eds.). (2008). Object-based image analysis, spatial concepts for knowledge-drives remote sensing applications (1st ed.). Lecture Notes in Geoinformation and Cartography. Berlin: Springer-Verlag.
  • Blaschke, T., & Strobl, J. (2001). What's wrong with pixels? Some recent developments interfacing remote sensing and gis. Geo-Informations-Systeme, 14(6), 12–17.
  • Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., …Bohner, J. (2015, July). System for automated geoscientific analyses (SAGA) v. 2.1.4. Geoscientific Model Development, 8(7), 1991–2007.
  • de Albuquerque, M. P., Esquef, I., Mello, A. R. G., & de Albuquerque, M. P. (2004). Image thresholding using tsallis entropy. Pattern Recognition Letters, 25, 1059–1065.
  • Drăguţ, L., & Blaschke, T. (2006, November). Automated classification of landform elements using object-based image analysis. Geomorphology, 81(3–4), 330–344.
  • Duchêne, C., Ruas, A., & Cambier, C. (2012). The CartACom model: Transforming cartographic features into communicating agents for cartographic generalization. International Journal of Geographical Information Science, 26(9), 1533–1562.
  • Finlayson, G. D., Drew, M. S., & Lu, C. (2004). Intrinsic images by entropy minimization. In T. Pajdla & J. Matas (Eds.), Computer vision—ECCV 2004 (pp. 582–595). Berlin: Springer-Verlag.
  • Frank, A. U., & Timpf, S. (1994). Multiple representations for cartographic objects in a multi-scale tree – an intelligent graphical zoom. Computers & Geosciences, 18(6), 823–829.
  • GRASS Development Team (2016). Geographic resources analysis support system (GRASS GIS) (Software, Version 7.0. Online) [Software manual].
  • Guilbert, E. (2013, April). Multi-level representation of terrain features on a contour map. GeoInformatica, 17(2), 301–324.
  • Guilbert, E., Gaffuri, J., & Jenny, B. (2014). Terrain generalisation. In D. Burghardt, C. Duchêne & W. Mackaness (Eds.), Abstracting geographic information in a data rich world (pp. 227–258). Berlin: Springer.
  • Harrie, L. E. (1999). The constraint method for solving spatial conflicts in cartographic generalization. Cartography and Geographic Information Science, 26(1), 55–69.
  • Harrie, L. E., & Weibel, R. (2007). Modelling the overall process of generalisation. In W. A. Mackaness, A. Ruas & L. T. Sarjakoski (Eds.), Generalisation of geographic information: Cartographic modelling and applications (pp. 67–87). Elsevier.
  • Imhof, E. (2007). Cartographic relief presentation. Redlands, CA: ESRI Press. (Originally published in German, 1965).
  • Inkscape Development Team (2016). Inkscape software. (Online) [Software manual].
  • Kennelly, P. J. (2015, July). Complexities of designing terrain maps illustrated with horizontal hachures. International Journal of Cartography, 1(2), 185–209.
  • Kennelly, P. J. (2016). Generalizing terrain representations with vector sums. Proceedings of the North American cartographic information society annual meeting, Colorado Springs.
  • Kennelly, P. J., & Kimerling, A. J. (2004). Hillshading of terrain using layer tints with aspect-variant luminosity. Cartography and Geographic Information Science, 31(2), 67–77.
  • Kennelly, P. J., & Kimerling, A. J. (2006). Non-photorealistic rendering and terrain representation. Cartographic Perspectives, 54, 35–54.
  • Kennelly, P. J., & Stewart, A. J. (2006). A uniform sky illumination model to enhance shading of terrain and urban areas. Cartography and Geographic Information Science, 33(1), 21–36.
  • Kettunen, P., Koski, C., & Oksanen, J. (2017). A design of contour generation for topographic maps with adaptive DEM smoothing. International Journal of Cartography, 3(1), 19–30.
  • Knopfli, R. (1983). Communication theory and generalization. In D. R. F. Taylor (Ed.), Graphic communication and design in contemporary cartography (pp. 177–218). New York, NY: John Wiley & Sons.
  • Lam, N., Catts, D., Quattrochi, D., Brown, D., & McMaster, R. B. (2005). Scale. In R. B. McMaster & E. L. Usery (Eds.), A research agenda for geographic information science (pp. 93–128). Boca Raton: CRC Press.
  • Leibovici, D. G., Claramunt, C., Guyader, D. Le, & Brosset, D. (2014). Local and global spatio-temporal entropy indices based on distance-ratios and co-occurences distributions. International Journal of Geographical Information Science, 28(5), 1061–1084.
  • Leonowicz, A. M., Jenny, B., & Hurni, L. (2010a). Automated reduction of visual complexity in small-scale relief shading. Cartographica: The International Journal for Geographic Information and Geovisualization, 45(1), 64–74.
  • Leonowicz, A. M., Jenny, B., & Hurni, L. (2010b). Terrain sculptor: Generalizing terrain models for relief shading. Cartographic Perspectives, 67, 51–60.
  • Leyk, S., Nagle, N. N., & Buttenfield, B. P. (2013). Maximum entropy dasymetric modeling for demographic small area estimation. Geographical Analysis, 45, 285–306.
  • Li, Z. (2008). Multi-scale digital terrain modelling and analysis. In Q. Zhou, B. Lees & G.-a. Tang (Eds.), Advances in digital terrain analysis (pp. 59–83). Berlin: Springer.
  • Li, Z., & Openshaw, S. (1990). A natural principle of objective generalization of digital map data and other spatial data (Tech. Rep.). Newcastle upon Tyne: CURDS, University of Newcastle upon Tyne.
  • Li, Z., & Sui, H. (2000, June). An integrated technique for automated generalization of contour maps. The Cartographic Journal, 37(1), 29–37.
  • Lindeberg, T. (1994). Scale-space theory: A basic tool for analysing structures at different scales. Journal of Applied Statistics, 21(2), 224–270.
  • Lindeberg, T. (2008). Scale-space. In B. Wah (Ed.), Encyclopedia of computer science and engineering (Vol. IV, pp. 2495–2504). Hoboken, NJ: John Wiley and Sons.
  • Lindeberg, T. (2014). Scale selection. In K. Ikeuchi (Ed.), Computer vision (pp. 701–713). Berlin: Springer.
  • Lindsay, J. B. (2016). The practice of DEM stream burning revisited. Earth Surface Processes and Landforms, 41(5), 658–668.
  • Marston, B. E., & Jenny, B. (2015). Improving the representation of major landforms in analytical relief shading. International Journal of Geographical Information Science, 29(7), 1144–1165.
  • McMaster, R. B., & Monmonier, M. (1989). A conceptual framework for quantitative and qualitative raster-mode generalization. In Proceedings of the annual GIS/LIS conference. Orlando, FL.
  • Monmonier, M. S. (1983). Raster-mode area generalization for land use and land cover maps. Cartographica: The International Journal for Geographic Information and Geovisualization, 20(4), 65–91.
  • Openshaw, S. (1984). The modifiable areal unit problem. Norwich: Geo Books, Regency House.
  • Pingel, T. J., & Clarke, K. (2014). Perceptually shaded slope maps for the visualization of digital surface models. Cartographica: The International Journal for Geographic Information and Geovisualization, 49(4), 225–240.
  • Pun, T. (1980). A new method for grey-level picture thresholding using the entropy of the histogram. Signal Processing, 2, 223–237.
  • QGIS Development Team (2015). QGIS Geographic Information System (Online) [Software manual].
  • Raposo, P. (2013). Scale-specific automated line simplification by vertex clustering on a hexagonal tessellation. Cartography and Geographic Information Science, 40(5), 427–443.
  • Renard, J., & Duchêne, C. (2014). Urban structure generalization in multi-agent process by use of reactional agents. Transactions in GIS. 18(2), 201–218. doi:10.1111/tgis.12018.
  • Reuter, H. I., Nelson, A., & Jarvis, A. (2007). An evaluation of void-filling interpolation methods for SRTM data. International Journal of Geographical Information Science, 21(9), 983–1008.
  • Ruas, A. (2002). Les problématiques de l'automatisation de la généralisation. In A. Ruas (Ed.), Généralisation et représentation multiple (pp. 75–90). Hermes Science Publications.
  • Sarjakoski, L. T. (2007). Conceptual models of generalisation and multiple representation. In W. A. Mackaness, A. Ruas & L. T. Sarjakoski (Eds.), Generalisation of geographic information: Cartographic modelling and applications (pp. 11–36). Elsevier, on behalf of the International Cartographic Association.
  • Saunders, W. K. (1999). Preparation of DEMs for use in environmental modeling analysis. In Proceedings of the Nineteenth annual ESRI international user conference. San Diego, CA.
  • Seong, J. C., & Usery, E. L. (2001). Modeling raster representation accuracy using a scale factor model. Photogrammetric Engineering and Remote Sensing, 67(10), 1185–1191.
  • Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3), 379–423.
  • Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Urbana: University of Illinois Press.
  • Stepinski, T. F., & Bagaria, C. (2009). Segmentation-based unsupervised terrain classification for generation of physiographic maps. IEEE Geoscience and Remote Sensing Letters, 6(4), 733–737.
  • Sukhov, V. I. (1967). Information capacity of a map entropy. Geodesy and Aerophotography, 10(4), 212–215.
  • Sukhov, V. I. (1970). Application of information theory in generalisation of map contents. In K. Frenzel (Ed.), International yearbook of cartography, 1970 (pp. 41–47). Gutersloh: Rand McNally & Co.
  • Timpf, S., & Frank, A. U. (1997). Exploring the life of screen objects. In Proceedings of the autocarto 13 conference (pp. 195–203). Seattle, Washington.
  • Tobler, W. R. (1988). Resolution, resampling, and all that. In H. Mounsey & R. F. Tomlinson (Eds.), Building databases for global science: The proceedings of the first meeting of the international geographical union global database planning project (pp. 129–137). Hampshire: Taylor and Francis.
  • van der Walt, S., Schonberger, J. L., Nunez-Inglesias, J. L., Boulogne, F., Warner, J. D., Yager, N., …Yu, T. (2014). Scikit-image: Image processing in Python. PeerJ, 2, e453.
  • Weibel, R. (1992, January). Models and experiments for adaptive computer-assisted terrain generalization. Cartography and Geographic Information Systems, 19(3), 133–153.
  • Wilson, M. F., O'Connell, B., Brown, C., Guinan, J. C., & Grehan, A. J. (2007). Multiscale terrain analysis of multibeam bathymetry data for habitat mapping on the continental slope. Marine Geodesy, 30, 3–35.
  • Yoeli, P. (1967, December). The mechanisation of analytical hill shading. The Cartographic Journal, 4(2), 82–88.
  • Zakşek, K., & Podobnikar, T. (2005). An effective DEM generalization with basic GIS operations. In Proceedings of the 8th ICA workshop on generalisation and multiple representation. A Coruńa.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.