78
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effect of Mn doping on dielectric response and optical band gap of LaGaO3

ORCID Icon, ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 539-549 | Accepted 28 Jun 2017, Published online: 05 Jul 2017

References

  • Krohns S, Lunkenheimer P, Meissner S, et al. The route to resource-efficient novel materials. Nat Mater. 2011;10(12):899–901. DOI:10.1038/nmat3180
  • Sagdeo A, Gautam K, Sagdeo PR, et al. Large dielectric permittivity and possible correlation between magnetic and dielectric properties in bulk BaFeO3−δ. Appl Phys Lett. 2014;105(4):042906. DOI:10.1063/1.4892064
  • Sagdeo PR, Anwar S, Lalla NP. Strain induced coexistence of monoclinic and charge ordered phases in La1-xCaxMnO3. Phys Rev B. 2006;74(21):214118. DOI:10.1103/PhysRevB.74.214118
  • Gao P, Li N, Wang A, et al. Perovskite LaMnO3 hollow nanospheres: the synthesis and the application in catalytic wet air oxidation of phenol. Mater Lett. 2013;92:173–176. DOI:10.1016/j.matlet.2012.10.091
  • Cao Y, Lin B, Sun Y, et al. Symmetric/asymmetric supercapacitor based on the perovskite-type lanthanum cobaltate nanofibers with Sr-substitution. Electrochim Acta. 2015;178:398–406. DOI:10.1016/j.electacta.2015.08.033
  • Xu B, Yin KB, Lin J, et al. Room-temperature ferromagnetism and ferroelectricity in Fe-doped BaTiO3. Phys Rev B. 2009;79(13):134109. DOI:10.1103/PhysRevB.79.134109
  • Wei XK, Su YT, Sui Y, et al. Structure, electrical and magnetic property investigations on dense Fe-doped hexagonal BaTiO3. J Appl Phys. 2011;110(11):114112. DOI:10.1063/1.3658813
  • Dang NV, Thanh TD, Hong LV, et al. Structural, optical and magnetic properties of polycrystalline BaTi1−xFexO3 ceramics. J Appl Phys. 2011;110(4):043914. DOI:10.1063/1.3625235
  • Nair VG, Pal L, Subramanian V, et al. Structural, magnetic, and magnetodielectric studies of metamagnetic DyFe0.5Cr0.5O3. J Appl Phys. 2014;115(17):17D728. DOI:10.1063/1.4870139
  • Sandstrom RL, Giess EA, Gallagher WJ, et al. Lanthanum gallate substrates for epitaxial high-temperature superconducting thin films. Appl Phys Lett. 1988;53(19):1874–1876. DOI:10.1063/1.100485
  • Senyshyn A, Ehrenberg H, Vasylechko L, et al. Computational study of LnGaO3 (Ln = La–Gd) perovskites. J Phys: Condens Matter. 2005;17(39):6217. DOI:10.1088/0953-8984/17/39/008
  • Dube DC, Scheel HJ, Reaney I, et al. Dielectric properties of lanthanum gallate (LaGaO3) crystal. J Appl Phys. 1994;75(8):4126–4130. DOI:10.1063/1.355993
  • Guo W, Liu J, Zhang Y. Electrical and stability performance of anode-supported solid oxide fuel cells with strontium- and magnesium-doped lanthanum gallate thin electrolyte. Electrochim Acta. 2008;53(13):4420–4427. DOI:10.1016/j.electacta.2008.01.039
  • Huang K, Goodenough J. A solid oxide fuel cell based on Sr- and Mg-doped LaGaO3 electrolyte: the role of a rare-earth oxide buffer. J Alloys Compd. 2000;303–304:454–464.10.1016/S0925-8388(00)00626-5
  • Ishihara T, Tabuchi J, Ishikawa S, et al. Recent progress in LaGaO3 based solid electrolyte for intermediate temperature SOFCs. Solid State Ionics. 2006;177(19–25):1949–1953. DOI:10.1016/j.ssi.2006.01.044
  • Tompsett GA, Sammes NM, Phillips RJ. Raman spectroscopy of the LaGaO3 phase transition. J Raman Spectrosc. 1999;30(7):497–500. DOI:10.1002/(SICI)1097-4555(199907)30:7<497::AID-JRS409>3.0.CO;2-V
  • Malavasi L, Baldini M, di Castro D, et al. High pressure behavior of Ga-doped LaMnO3: a combined X-ray diffraction and optical spectroscopy study. J Mater Chem. 2010;20(7):1304–1311. DOI:10.1039/B914975A
  • Guenter MM, Lerch M, Boysen H, et al. Combined neutron and synchrotron X-ray diffraction study of Sr/Mg-doped lanthanum gallates up to high temperatures. J Phys Chem Solids. 2006;67(8):1754–1768. DOI:10.1016/j.jpcs.2006.04.001
  • Kobayashi J, Tazoh Y, Sasaura M, et al. Structural analysis of lanthanum gallate. J Mater Res. 1991;6(01):97–100. DOI:10.1557/JMR.1991.0097
  • Noginova N, Loutts GB, Gillman ES, et al. Conductivity and switching phenomena in Mn-doped perovskite single crystals and manganite thin films. Phys Rev B. 2001;63(17):174414. DOI:10.1103/PhysRevB.63.174414
  • Farrell J, Gehring GA. Interplay between magnetism and lattice distortions in LaMn1−xGaxO3. New J Phys. 2004;6(1):168. DOI:10.1088/1367-2630/6/1/168
  • Vidya R, Ravindran P, Vajeeston P, et al. Effect of oxygen stoichiometry on spin, charge, and orbital ordering in manganites. Phys Rev B. 2004;69(9):092405. DOI:10.1103/PhysRevB.69.092405
  • Sánchez MC, Subías G, García J, et al. Stability of the tetragonal Mn3+O6 distortions in the LaMn1-xGaxO3 series by x-ray absorption spectroscopy. Phys Rev B. 2004;69(18):184415. DOI:10.1103/PhysRevB.69.184415
  • Sánchez MC, García J, Subías G, et al. Lack of Jahn-Teller distortion in highly diluted LaMn1-xGaxO3 (x>0.6)$. Phys Rev B. 2006;73(9):094416. DOI:10.1103/PhysRevB.73.094416
  • Shahee A, Choudhary RJ, Rawat R, et al. Effect of oxygen off-stoichiometry on coupled structural and magnetic phase-transitions in La0.15Sr0.85MnO3−δ (δ=0.02, 0.14). Solid State Commun. 2014;177:84–88. DOI:10.1016/j.ssc.2013.10.005
  • Rai HM, Saxena SK, Mishra V, et al. Observation of room temperature magnetodielectric effect in Mn-doped lanthanum gallate and study of its magnetic properties. J Mater Chem C. 2016;4(46):10876–10886. DOI:10.1039/C6TC03641D
  • Peña MA, Fierro JLG. Chemical structures and performance of perovskite oxides. Chem Rev. 2001;101(7):1981–2018. DOI:10.1021/cr980129f
  • Tofield BC, Scott WR. Oxidative nonstoichiometry in perovskites, an experimental survey; the defect structure of an oxidized lanthanum manganite by powder neutron diffraction. J Solid State Chem. 1974;10(3):183–194. DOI:10.1016/0022-4596(74)90025-5
  • Lunkenheimer P, Krohns S, Riegg S, et al. Colossal dielectric constants in transition-metal oxides. Eur Phys J Spec Top. 2010;180(1):61–89. DOI:10.1140/epjst/e2010-01212-5
  • Sirdeshmukh DB, Sirdeshmukh L, Subhadra KG. Fifty years of Szigeti’s dielectric theory – a review. Pramana. 2007;69(4):491–520. DOI:10.1007/s12043-007-0152-z
  • Ye L-H, Luo N, Peng L-M, et al. Dielectric constant of NiO and LDA+U. Phys Rev B. 2013;87(7):075115. DOI:10.1103/PhysRevB.87.075115
  • Jain SK, Srivastava P. Optical properties of hexagonal boron nanotubes by first-principles calculations. J Appl Phys. 2013;114(7):073514. DOI:10.1063/1.4819230
  • Tauc J, Grigorovici R, Vancu A. Optical properties and electronic structure of amorphous germanium. Phys Status Solidi (b). 1966;15(2):627–637. DOI:10.1002/pssb.19660150224
  • Singh SD, Nandanwar V, Srivastava H, et al. Determination of the optical gap bowing parameter for ternary Ni1−xZnxO cubic rocksalt solid solutions. Dalton Trans. 2015;44(33):14793–14798. DOI:10.1039/C5DT02283E
  • Gilbert B, Frandsen C, Maxey ER, et al. Band-gap measurements of bulk and nanoscale hematite by soft x-ray spectroscopy. Phys Rev B. 2009;79(3):035108. DOI:10.1103/PhysRevB.79.035108
  • Late R, Rai HM, Saxena SK, et al. Effect of Hf doping on the structural, dielectric and optical properties of CaCu3Ti4O12 ceramic. J Mater Sci: Mater Electron. 2016;1–8. DOI:10.1007/s10854-016-4505-6
  • Zhang J-H, Clark DJ, Brant JA, et al. Infrared nonlinear optical properties of lithium-containing diamond-like semiconductors Li2ZnGeSe4 and Li2ZnSnSe4. Dalton Trans. 2015;44(24):11212–11222. DOI:10.1039/C5DT01635E
  • Ogisu K, Ishikawa A, Shimodaira Y, et al. Electronic band structures and photochemical properties of La−Ga-based oxysulfides. J Phys Chem C. 2008;112(31):11978–11984. DOI:10.1021/jp802153t
  • Jonscher AK. Dielectric relaxation in solids. London: Chelsea Dielectrics Press Ltd; 1983.
  • Raju GG. Dielectrics in electric fields. Boca Raton (FL): CRC Press; 2003.10.1201/9780203912270
  • Freitas JF, Mitchell RS, Schiffer P. Magnetodielectric consequences of phase separation in the colossal magnetoresistance manganite Pr0.7Ca0.3MnO3. Phys Rev B. 2005;72(14):144429. DOI:10.1103/PhysRevB.72.144429
  • Lin YQ, Chen XM. Dielectric relaxation and polaronic conduction in double perovskite La2MgMnO6. Appl Phys Lett. 2010;96(14):142902. DOI:10.1063/1.3377906
  • González-Abreu Y, Peláiz-Barranco A, Araújo EB, et al. Dielectric relaxation and relaxor behavior in bilayered perovskites. Appl Phys Lett. 2009;94(26):262903. DOI:10.1063/1.3168651
  • Wu X, Wang X, Liu Y, et al. Study on dielectric and magnetodielectric properties of Lu3Fe5O12 ceramics. Appl Phys Lett. 2009;95(18):182903. DOI:10.1063/1.3259651
  • Lunkenheimer P, Bobnar V, Pronin AV, et al. Origin of apparent colossal dielectric constants. Phys Rev B. 2002;66(5):052105. DOI:10.1103/PhysRevB.66.052105
  • Krohns S, Lunkenheimer P, Ebbinghaus SG, et al. Broadband dielectric spectroscopy on single-crystalline and ceramic CaCu3Ti4O12. Appl Phys Lett. 2007;91(2):022910. DOI:10.1063/1.2757098
  • Shah M, Nadeem M, Atif M. Dielectric relaxation with polaronic and variable range hopping mechanisms of grains and grain boundaries in Pr0.8Ca0.2MnO3. J Appl Phys. 2012;112(10):103718. DOI:10.1063/1.4767366
  • Sahu JR, Serrao CR, Ray N, et al. Rare earth chromites: a new family of multiferroics. J Mater Chem. 2006;17(1):42–44. DOI:10.1039/B612093H
  • Costantini JM, Salvetat JP, Brisard F. Dielectric and transport properties of magnetic insulators irradiated with GeV heavy ions. J Appl Phys. 1997;82(10):5063–5071. DOI:10.1063/1.366403
  • Lunkenheimer P, Fichtl R, Ebbinghaus SG, et al. Nonintrinsic origin of the colossal dielectric constants in CaCu3Ti4O12. Phys Rev B. 2004;70(17):172102. DOI:10.1103/PhysRevB.70.172102
  • Fukunaga K. Dielectric materials at high frequencies. IEEE Trans Dielectr Electr Insul. 2006;13(4):687–687. DOI:10.1109/TDEI.2006.1667725
  • Wolfe RW, Newnham RE. Rare earth bismuth titanates. J Electrochem Soc. 1969;116(6):832–835. DOI:10.1149/1.2412072
  • Mishra A, Mishra N, Bisen S, et al. Frequency and temperature dependent dielectric studies of BaTi 0.96 Fe 0.04 O 3. J Phys: Conf Ser. 2014;534(1):012011. DOI:10.1088/1742-6596/534/1/012011
  • Ikeda N, Ohsumi H, Ohwada K, et al. Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4. Nature. 2005;436(7054):1136–1138. DOI:10.1038/nature04039
  • Ma Y, Chen XM, Lin YQ. Relaxorlike dielectric behavior and weak ferromagnetism in YFeO3 ceramics. J Appl Phys. 2008;103(12):124111. DOI:10.1063/1.2947601
  • Yang J, Meng XJ, Shen MR, et al. Hopping conduction and low-frequency dielectric relaxation in 5 mol% Mn doped (Pb, Sr)TiO3 films. J Appl Phys. 2008;104(10):104113. DOI:10.1063/1.3021447
  • Goodenough JB, Wold A, Arnott RJ, et al. Relationship between crystal symmetry and magnetic properties of ionic compounds containing Mn3+. Phys Rev. 1961;124(2):373–384. DOI:10.1103/PhysRev.124.373
  • Pollert E, Krupička S, Kuzmičová E. Structural study of Pr1−xCaxMnO3 and Y1−xCaxMnO3 perovskites. J Phys Chem Solids. 1982;43(12):1137–1145. DOI:10.1016/0022-3697(82)90142-1
  • Millis AJ, Littlewood PB, Shraiman BI. Double exchange alone does not explain the resistivity of La1-xSrxMnO3. Phys Rev Lett. 1995;74(25):5144–5147. DOI:10.1103/PhysRevLett.74.5144
  • Cheng ZX, Shen H, Xu JY, et al. Magnetocapacitance effect in nonmultiferroic YFeO3 single crystal. J Appl Phys. 2012;111(3):034103. DOI:10.1063/1.3681294
  • Krishnan RV, Banerjee A. Electron transport studies in rhombohedral series of Al-doped LaMnO3+δ: an effective medium approach. J Phys: Condens Matt. 2000;12(36):7887. DOI:10.1088/0953-8984/12/36/304
  • Catalan G. Magnetocapacitance without magnetoelectric coupling. Appl Phys Lett. 2006;88(10):102902. DOI:10.1063/1.2177543
  • Krohns S, Lunkenheimer P, Kant C, et al. Colossal dielectric constant up to gigahertz at room temperature. Appl Phys Lett. 2009;94(12):122903. DOI:10.1063/1.3105993
  • Lunkenheimer P, Rudolf T, Hemberger J, et al. Dielectric properties and dynamical conductivity of LaTiO3: From dc to optical frequencies. Phys Rev B. 2003;68(24):245108. DOI:10.1103/PhysRevB.68.245108

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.