62
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Chemical assisted ultrasonic machining of polycarbonate glass and optimization of process parameters by Taguchi and grey relational analysis

, &
Pages 563-585 | Accepted 29 Jun 2017, Published online: 10 Jul 2017

References

  • Jain NK, Jain VK. Modeling of material removal in mechanical type of advanced machining processes- a state of the art review. Int J Mach Tools Manuf. 2001;41:1573–1635. doi:10.1016/S0890-6955(01)00010-4.
  • Jain NK, Jain VK. Modeling of material removal in mechanical type advanced machining processes: a state of art review. Int J Mach Tools Manuf. 2001;41(11):1573–1635. doi:10.1016/S0890-6955(01)00010-4.
  • Jain VK. Advanced machining processes. New Delhi: Allied Publishers Private Limited; 2013.
  • Kumar J. Ultrasonic machining? A comprehensive review. Mach Sci Technol. 2013;17(3):325–379. doi:10.1080/10910344.2013.806093.
  • Azarhoushang B, Akbari J. Ultrasonic assisted drilling of Inconel 738-LC. Int J Mach Tools Manuf. 2007;47:1027–1033. doi:10.1016/j.ijmachtools.2006.10.007.
  • Dvivedi A, Kumar P. Surface quality evaluation in ultrasonic drilling through the Taguchi technique. Int J Adv Manuf Technol. 2007;34(1–2):131–140. doi:10.1007/s00170-006-0586-3.
  • Gauri SK, Chakravorty R, Chakraborty S. Optimization of correlated multiple responses of ultrasonic machining (USM) process. Int J Adv Manuf Technol. 2011;53:1115–1127. doi:10.1007/s00170-010-2905-y.
  • Gilmore R. Ultrasonic machining- a case study. J Mater Process Technol. 1991;28(1–2):139–148. doi:10.1016/0924-0136(91)90213-X.
  • Ghahramani B, Wang ZY. Precision ultrasonic machining process: A case study of stress analysis of ceramic (Al2O3). Int J Mach Tools Manuf. 2001;41(8):1189–1208. doi:10.1016/S0890-6955(01)00011-6.
  • Goetze D. Effect of vibration amplitude, frequency, and composition of the abrasive slurry on the rate of ultrasonic machining in ketos tool steel. J Acoust Soc Am. 1956;28(6):1033–1037. doi:10.1121/1.1908545.
  • Kennedy DC, Grieve RJ. Ultrasonic machining- a review. Prod Eng. 1975;54(9):481–486. doi:10.1049/tpe:19750245.
  • Rao RV, Pawar PJ, Davim JP. Parameter optimization of ultrasonic machining process using nontraditional optimization algorithms. Mater Manuf Processes. 2010;25(10):1120–1130. doi:10.1080/10426914.2010.489788.
  • Wiercigroch M, Neilson RD, Player MA. Material removal rate prediction for ultrasonic drilling of hard materials using an impact oscillator approach. Phys Lett. 1999;259:91–96. doi:10.1016/S0375-9601(99)00416-8.
  • Soundararajan V, Radhakrishnan V. An experimental investigation on the basic mechanisms involved in ultrasonic machining. Int J Mach Tool Des Res. 1986;26(3):307–321. doi:10.1016/0020-7357(86)90008-9.
  • Singh K, Ahuja IPS. Ultrasonic machining processes- review paper. Int J Multi-discip Eng Bus Manage. 2014;2(3):57–66.
  • Singh K, Ahuja IPS, Kapoor J. Ultrasonic machining of glass brittle material. In: Proceeding, National Conference Latest Development in Materials, Manufacturing and Quality Control; February 19–20; 2015. India: GZSCCET, BTI. ISBN 978-93-5196-055-3.
  • Singh K, Ahuja IPS, Kapoor J. Study the effect of abrasive and hydrofluoric acid in ultrasonic machining of plain glass material. In: Proceeding, National Conference Latest Development in Materials, Manufacturing and Quality Control; February 19–20. India: GZSCCET, BTI. ISBN 978-93-5196-055-3.
  • Choi JP, Jeon BH, Kim BH. Chemical-assisted ultrasonic machining of glass. J Mater Process Technol. 2007;191:153–156. doi:10.1016/j.jmatprotec.2007.03.017.
  • Guzzo PL, Shinohara AH, Raslan AA. A comparative study on ultrasonic machining of hard and brittle materials. Journal of the Brazilian Society of Mechanical Science & Engineering. 26(1):56–61. ISSN 1806-3691. doi:10.1590/S1678-58782004000100010.
  • Thoe TB, Aspinwall DK, Wise MLH. Review on ultrasonic machining. Int J Mach Tools Manuf. 1998;38(4):239–255. doi:10.1016/S0890-6955(97)00036-9.
  • Kumar J, Khamba JS. An investigation into the effect of work material properties, tool geometry and abrasive properties on performance indices of ultrasonic machining. Int J Mach Mach Mater. 2009;5(2/3):347–365. doi:10.1504/IJMMM.2009.023399.
  • Weilong C, Zhijian P. Process of ultrasonic machining. London: Handbook of manufacturing Engineering & Technology; 2013.
  • Hong H, Hung TY, Advanced analysis of Nontraditional machining. London: Springer; 1956. p. 325–339. ISBN 978-1-4614-4054-3. doi:10.1007/978-1-4614-4054-3
  • Haslehurst M. Manufacturing technology. 3rd ed. New Delhi: Viva Book; 1981. p. 270–271.
  • Weller EJ. Non-traditional machining processes. 2nd ed. American Society of tool & Manufacturing Engineers; 1984. p. 15–71.
  • Adithan M. Tool wear studies in ultrasonic drilling. Wear. 1974;29:81–93. doi:10.1016/0043-1648(74)90136-7.
  • Sahay C, Ghosh S, Kammila HK. Analysis of ultrasonic machining using monte carlo simulation. Proceedings of the ASME 2011 International Mechanical Engineering Congress & Exposition; Denver, Colorado, USA; Nov 10–11, 2011. p. 1–9. doi:10.1115/IMECE2011-63240.
  • Kainth GS, Nandy A, Singh K. On the mechanics of material removal in ultrasonic machining. Int J Mach Toll Des Res. 1979;19(1):33–41. doi:10.1016/0020-7357(79)90019-2.
  • Singh K, Ahuja IPS, Kapoor J. Comparative study between conventional machining, chemical ultrasonic machining (CUSM) and ultrasonic machining (USM) of plain glass, polycarbonate, acrylic, bullet proof and heat resistant glass. In: Proceeding, International conference in latest development in materials, manufacturing and quality control; Feb 12–13; 2016. GZSCCET BTI India. ISSN 978-93-5212-858-7.
  • Adithan M. Tool wear characteristics in ultrasonic drilling. Tribol Int. 1981;14(6):351–356. doi:10.1016/0301-679X(81)90103-1.
  • Nair EV, Ghosh A. A fundamental approach to the study of mechanics of ultrasonic machining. Int J Prod Res. 1985;23:731–753. doi:10.1080/00207548508904741.
  • Komaraiah M, Narasimha Reddy PN. A study on the influence of work-piece properties in ultrasonic machining. Int J Mach Tools Manuf. 1993;33(3):495–505. doi:10.1016/0890-6955(93)90055-Y.
  • Moreland MA. Ultrasonic machining and finishing. ASM Handbook, Ceramics and Glasses; 1989. 16: p. 359–362. ISBN 978-0-87170-022-3.
  • Graff KF. Macrosonics in industry. 5. Ultrasonic machining. Ultrasonics. 1975;13:103–109. doi:10.1016/0041-624X(75)90060-8.
  • Prewo KM, Brennan JJ. High Strength silicon carbide fiber-reinforced glass-matrix composites. J Mater Sci. 1980;15(2):463–468. doi:10.1007/BF00551699.
  • Pandey PC, Shan HS. Modern machining processes. Tata McGraw-Hill; 1980. Chapter 2. p. 7–38.
  • Morteza AS, Maohammad NR. Development of design & manufacturing support tool for optimization of ultrasonic machining (USM) and Rotary USM. J Modern Processes Manuf Prod. 2014;3(2):59–74.
  • Thoe TB, Aspinwall DK, Wise MLH. The effect of operating parameters when ultrasonic contour machining. In: Proceedings of the 12th Annual Conference of the Irish Manufacturing Committee (IMC-12); September; Cork, Ireland; 1995. p. 305–312.
  • Singh K, Kumar V. A study on the tool geometry and stresses induced in tool in ultrasonic machining process applied for the tough and brittle materials. Int J Multi-Discip Eng Bus Manage. 2014;2(3):67–71.
  • Singh K, Kumar VS. Finite element analysis of ultrasonic machine tool. Int J Eng Res Technol. 2014;3(7):1647–1650.
  • Adithan M, Venkatesh VC. Parameter influence on tool wear in ultra-sonic drilling. Tribol Int. 1974;7(6):260–264. doi:10.1016/0041-2678(74)90106-7.
  • Babitsky VI, Astashev VK. Ultrasonic processes and machine. Berlin: Springer; 2007. ISBN 978-3-540-72060-7.
  • Vinod Y, Aniruddha D. Design of horn for rotary ultrasonic machining using the finite element method. Int J Adv Manuf Technol. 2008;39(1):9–20. doi:10.1007/s00170-007-1193-7.
  • Jain V, Sharma AK, Kumar P. Investigations on tool wear in micro Ultrasonic machining. Appl Mech Mater. 2012;110–116:1561–1566. Tranc Tech Publication Switzerland. https://www.scientific.net/AMM.110-116.1561.
  • Adithan M. Abrasive wear in ultrasonic drilling. Tribol Int. 1983;16(5):253–255. doi:10.1016/0301-679X(83)90083-X.
  • Drozda TJ, Wick C. Non-traditional machining, tool and manufacturing engineers handbook. Vol. 1. Dearborn (MI): Society of Manufacturing Engineers; 1983. p. 1–23, ISBN No. 0872633519
  • Neppiras EA. Macrosonics in industry 1. Introduction. Ultrasonics. 1972;10(1):9–13. doi:10.1016/0041-624X(72)90207-7.
  • Amin SG, Ahmed MHM, Youssef HA. Computer aided design of acoustic horns for ultrasonic machining using finite element analysis. J Mater Process Technol. 1995;55:254–260. doi:10.1016/0924-0136(95)02015-2.
  • Kremer D. The state of the art of ultrasonic machining. CIRP Ann – Manuf Technol. 1981;30(1):107–110. doi:10.1016/S0007-8506(07)60905-6.
  • Miller GE. Special theory of ultrasonic machining. J Appl Phys. 1957;28(2):149–156. doi:10.1063/1.1722698.
  • Kaczmarek. Impact Grinding (Ultrasonic machining)—book chapter: 21 principles of machining by cutting Abrasion and Erosion. Stevenage: Peter Peregrinus Ltd; 1976. p. 448–462, ISBN 0901223662.
  • Dharmadhikari SW, Sharma CS. Optimization of abrasive life in ultrasonic machining. J Manuf Sci Eng. 1985;107(4):361–364. doi:10.1115/1.3186010.
  • Bekrenev, N.V.; Muldasheva, G.K.; Petrovskii, A.P, et al. Influence of the thermal effect on the cutting forces in the ultrasonic machining of high strength material. Russ Eng Res. 2015;35(10):758–759. ISSN 1068-798X. doi: 10.3103/S1068798X15100056
  • Cook NH. Manufacturing Analysis. New York (NY): Addison-Wesley; 1966. p. 133–138.
  • Fan WH, Chao CL, Chou WC, et al. Study on the surface integrity of micro-ultrasonic machined glass-ceramic material. Key Eng Mater. 2009;407–408:731–734. https://www.scientific.net/KEM.407-408.731.
  • Seah KHW, Wong, YS, Lee, LC. Design of tool holders for ultra-sonic machining using FEM. J Mater Process Technol. 1993;37(1–4):801–816. doi:10.1016/0924-0136(93)90138-V.
  • Neppiras EA, Foskett RD. Ultrasonic machining. Phillips Tech Rev. 1957;18(11):325–368.
  • Khairy ABE. Assessment of some dynamic parameters for the ultra-sonic machining process. Wear. 1990;137:187–198. doi:10.1016/0043-1648(90)90135-W.
  • Jain VK. Advanced machining process. India: Allied Publisher Pvt Limited; 2002. p. 28–56.
  • Chang S, Bone GM. Burr size reduction in drilling by ultrasonic assistance. Rob Comp-Integr Manuf. 2005;21:442–450.10.1016/j.rcim.2004.11.005
  • Thoe TB, Aspinwall DK. Combined ultrasonic and electric discharge machining of ceramic coated nickel alloy. J Mater Process Technol. 1999;92–93:323–328. doi:10.1016/S0924-0136(99)00117-X.
  • Neppiras EA. Ultrasonic machining and forming. Ultrasonics. 1964;2(4):167–173. doi:10.1016/0041-624X(64)90110-6.
  • Scholze H. Glass – nature, structure, and properties. New York, NY: Springer, Verlag; 1991. ISBN 978-1-4613-9069-5. doi:10.1007/978-1-4612-9069-5.
  • Folmer JCW, Franzen S. Study of polymer glasses by modulated differential scanning calorimetry in the undergraduate physical chemistry laboratory. J Chem Educ. 2003;80(7):813–818. doi:10.1021/ed080p813.
  • Phillips DC, Sambell RAJ, Bowen DH. The mechanical properties of carbon fiber reinforced Pyrex glass. J Mater Sci. 1972;7(12):1454–1464. doi:10.1007/BF00574937.
  • Vogel W, Kreidl N. Chemistry of glass. Wiley; 1985. ISBN 978-0-916094-73-7.
  • Noel C. The glass and glazing handbook. Standards Association of Australia; 1998. ISBN 073372468X.
  • Stookey SD, Beall GH. Explorations in glass: an autobiography. Wiley-Blackwell; 2006. p. 34–42. ISBN 978-1-57498-124-7.
  • Rozenberg LD, Physical principles of ultrasonic technology. New York, NY: 1973, Vol. 1: p. 319–326. ISBN 978-1-4684-8217-1. DOI: 10.1007/978-1-4684-8217-1.
  • Smith WF, Jayad H. Foundation of material science and engineering. 4th edition. Richmond, Taxis, USA:McGraw-Hill; 1996. p. 512–518. ISBN: 9780-0729-535-89.
  • Venkatesh VC. Machining of glass by impact processes. J Mech Working Technol. 1983;8:247–260. doi:10.1016/0378-3804(83)90042-6.
  • Kuo KL. Experimental investigation of brittle material milling using rotary ultrasonic machining. In: Proceedings of the 35th International MATADOR Conference; 2007. London: Springer. p. 195–198. doi: 10.1007/978-1-84628-988-0_43
  • Clark DE, Pantano CG Jr, Hench LL. Corrosion of glass. Books for Industry; 1979.
  • Harper CA, Petrie EM. Plastic materials and processes: a concise encyclopaedia. Wiley. p. 9, ISBN 978-0471-45920-0. 10.1002/0471459216
  • Guzzo PL, Raslan AA, DeMello, JDB. Ultrasonic abrasion of quartz crystals. Wear. 2003;255:67–77. doi:10.1016/S0043-1648(03)00094-2.
  • Phillips JC. Topology of covalent non-crystalline solids I: Short-range order in chalcogenide alloys. J Non-Cryst Solids. 1979;34(2):153–181.10.1016/0022-3093(79)90033-4
  • Dutra ZE. Do cathedral glasses flow? Am J Phys. 1998;66(5):392–396.
  • Paul A. Chemistry of glasses. 2nd ed. London: Chapman and Hall; 1990. ISBN 0-412-27820-0.
  • Hasani H, Tabatabaei SA, Amiri G. Grey relational analysis to determine the optimum process parameters for open end sprnning yarns. J Eng Fibers Fabr 2012;7(2):81–86.
  • Komaraiah M, Manan MA, Reddy PN, et al. Investigation of surface roughness and accuracy in ultrasonic machining. Precis Eng. 1988;10(2):59–65. doi:10.1016/0141-6359(88)90001-3.
  • Hasiao YF, Tarng YS, Huang WJ. Optimization of plasma are welding parameters by using the Taguchi method with the Grey relational analysis. Mater Manuf Processes. 2008;23:51–58. doi:10.1080/10426910701524527.
  • Lin CL, Lin JL, Ko TC. Optimisation of EDM process based on the orthogonal array with fuzzy logic and grey relational analysis method. Int J Adv Manuf Technol. 2002;19:271–277. doi:10.1007/s001700200034.
  • You ML, Shu CM, Chen WT, et al Analysis of cardinal grey relational grade and grey entropy on achievement of air pollution reduction by evaluating air quality trend in Japan. J Cleaner Prod. 2017;142(4):3883–3889. doi:10.1016/j.jclepro.2016.10.072.
  • Ahmad N, Kamal S, Raza ZA, et al Multi-response optimization in the development of oleo-hydrophobic cotton fabric using Taguchi based grey relational analysis. Appl Surf Sci. 2016;367:370–381. doi:10.1016/j.apsusc.2016.01.165.
  • Lin HL. The use of the Taguchi method with grey relational analysis and a neural network to optimize a novel GMA welding process. J Intell Manuf. 2012;23(5):1671–1680. doi:10.1007/s10845-010-0468-2.
  • Manivannan S, Devi SP, Arumugam R, et al. Multi-objective optimization of flat plate heat sink using Taguchi-based Grey relational analysis. Int J Adv Manuf Technol. 2011;52:739–749. doi:10.1007/s00170-010-2754-8.
  • Meena VK, Azad MS. Grey relational analysis of micro-EDM machining of Ti-6Al-4 V alloy. Mater Manuf Processes. 2012;27:973–977. doi:10.1080/10426914.2011.610080.
  • Singh PN, Raghukandan K, Pai BC. Optimization by Grey relational analysis of EDM parameters on machining Al?10%SiCP composites. J Mater Process Technol. 2004;155–156:1658–1661. doi:10.1016/j.jmatprotec.2004.04.322.
  • Lin YH, Lee PC, Chang TP. Practical expert diagnosis modal based on the grey relational analysis technique. Expert Syst Appl. 2009;36:1523–1528. doi:10.1016/j.eswa.2007.11.046.
  • Patil PJ, Patil CR. Analysis of process parameters in surface grinding using single objective Taguchi and multi-objective grey relational grade. Perspect Sci. 2016;8:367–369. doi:10.1016/j.pisc.2016.04.077.
  • Schorderet A, Deghilage E, Agbeviade K. Tool type and hole diameters influence in deep ultrasonic drilling of micro holes in glass. Procedia CIRP. 2013;565–570. doi:10.1016/j.procir.2013.03.072.
  • Dr. Karl’s Homework: Glass Flows” Australia: ABC; 2000 January 26. [cited 24 Oct 2009].
  • Elliot SR. Physics of amorphous materials. Vol. 20 (9). London: Longman Group Ltd; 1984. ISBN 0-582-44636-8.
  • Sreenivasulu R, Srinivasarao C. Application of Grey relational analysis for surface roughness and roundness error in drilling of AL 6061 alloy. Int J Lean Thinking. 2012;3(2):68–78.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.