59
Views
2
CrossRef citations to date
0
Altmetric
Research Article

International research effort on graphene over the past 10 years

ORCID Icon &
Pages 166-182 | Accepted 26 Nov 2017, Published online: 11 Dec 2017

References

  • Burghard M, Klauk H, Kern K. Carbon based FET transistor for nanoelectronics. Adv Mater. 2009;21:2586–2600.10.1002/adma.200803582
  • Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6:183–191.10.1038/nmat1849
  • Rao CNR, Biswas K, Subrahmanyam KS, et al. Graphene, the new nanocarbon. J Mater Chem. 2009;19:2457–2469.10.1039/b815239j
  • Allen MJ, Tung VC, Kaner RB. Honeycomb carbon: a review of graphene. Chem Rev. 2010;110:132–145.10.1021/cr900070d
  • Dubacheva GV, Liang C-K, Bassani DM. Functional monolayers from carbon nanostructures-fullerenes, carbon nanotubes, and graphene as novel materials for solar energy conversion. Coord Chem Rev. 2012;256:2628–2639.10.1016/j.ccr.2012.04.007
  • Balandin AA, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene. Nano Lett ASAP. 2008;8(3):902–907.10.1021/nl0731872
  • Choi W, Lahiri I, Seelaboyina R, et al. Synthesis of graphene and its applications: A review. Crit Rev Solid State Mater Sci. 2010;35:52–71.10.1080/10408430903505036
  • Kuzmenko AB, van Heumen E, Carbone F, et al. Universal optical conductance of graphite. Phys Rev Lett. 2008;100:117401.10.1103/PhysRevLett.100.117401
  • Dreyer DR, Park S, Bielawski CW, et al. The chemistry of graphene oxide. Chem Soc Rev. 2010;39:228–240.10.1039/B917103G
  • Wang G, Yang J, Park J, et al. Facile synthesis and characterization of graphene nanosheets. J Phys Chem C. 2008;112:8192–8195.10.1021/jp710931 h
  • Nair RR, Blake P, Grigorenko AN, et al. Fine structure constant defines visual transparency of graphene. Science. 2008;320:1308.10.1126/science.1156965
  • Du X, Skachko I, Barker A, et al. Approaching ballistic transport in suspended graphene. Nat Nano. 2008;3:491–495.10.1038/nnano.2008.199
  • Bolotin KI, Sikes kJ, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008;146:351–355.10.1016/j.ssc.2008.02.024
  • Stoller MD, Park S, Zhu Y, et al. Graphene-based ultracapacitors. Nano Lett. 2008;8:3498–3502.10.1021/nl802558y
  • Singh V, Joung D, Zhai L, et al. Graphene based materials: Past, present and future. Prog Mater Sci. 2011;56:1178–1271.10.1016/j.pmatsci.2011.03.003
  • Zhang Y, Guo L, Wei S, et al. Direct imprinting of microcircuits on graphene oxide film by femtosecond laser reduction. Nano Today. 2010;5:15–20.10.1016/j.nantod.2009.12.009
  • Zhou Y, Bao Q, Varghese B, et al. Microstructuring of graphene oxide nanosheets using direct laser writing. Adv Mater. 2010;22:67–71.10.1002/adma.v22:1
  • Sokolov DA, Shepperd KR, Orlando TM. Formation of graphene features from direct laser-induced reduction of graphite oxide. J Phys Chem Lett. 2010;1:2633–2636.10.1021/jz100790y
  • Gilje S, Dubin S, Badakhshan A, et al. Photothermal deoxygenation of graphene oxide for patterning and distributed ignition applications. Adv Mater. 2010;22:419–423.10.1002/adma.v22:3
  • Cote LJ, Cruz-Silva R, Huang J. Flash reduction and patterning of graphite oxide and its polymer composite. J Am Chem Soc. 1032;131(2009):11027–11027.
  • Li X-H, Chen J-S, Wang X, et al. A Green chemistry of graphene: photochemical reduction towards monolayer graphene sheets and the role of water adlayers. Chem SusChem. 2012;5:642–646.
  • Koinuma M, Ogata C, Kamei Y, et al. Photochemical engineering of graphene oxide nanosheets. J Phys Chem C. 2012;116:19822–19827.10.1021/jp305403r
  • Stroyuk AL, Andryushina NS, Shcherban’ ND, et al. Photochemical reduction of graphene oxide in colloidal solution. Theor Exp Chem. 2012;48:2–13.10.1007/s11237-012-9235-0
  • Tan D, Liu X, Dai Y, et al. A universal photochemical approach to ultra-small, well-dispersed nanoparticle/reduced graphene oxide hybrids with enhanced nonlinear optical properties. Adv Opt Mater. 2015;3:836–841.10.1002/adom.v3.6
  • Kumar R, Dubey PK, Singh RK, et al. Catalyst-free synthesis of a three-dimensional nanoworm-like gallium oxide–graphene nanosheet hybrid structure with enhanced optical properties. RSC Adv. 2016;6:17669–17677.10.1039/C5RA24577 J
  • Kumar R, Singh RK, Savu R, et al. Microwave-assisted synthesis of void-induced graphene-wrapped nickel oxide hybrids for supercapacitor applications. RSC Adv. 2016;6:26612–26620.10.1039/C6RA00426A
  • Kumar R, Singh RK, Singh DP, et al. Microwave heating time dependent synthesis of various dimensional graphene oxide supported hierarchical ZnO nanostructures and its photoluminescence studies. Mater Des. 2016;111:291–300.10.1016/j.matdes.2016.09.018
  • Celiesiute R, Trusovas R, Niaura G, et al. Influence of the laser irradiation on the electrochemical and spectroscopic peculiarities of graphene chitosan composite film. Electrochim Acta. 2014;132:265–276.10.1016/j.electacta.2014.03.137
  • Zhang M, Kelleher EJR, Popov SV, et al. Ultrafast fibre laser sources: Examples of recent developments. Opt Fiber Technol. 2014;20:666–677.10.1016/j.yofte.2014.07.005
  • Trusovas R, Ratautas K, Racˇiukaitis G, et al. Reduction of graphite oxide to graphene with laser irradiation. Carbon. 2013;52:574–582.10.1016/j.carbon.2012.10.017
  • Ross AS, Baliga C, Verma P, et al. A quarantine process for the resolution of uodenoscope-associated transmission of multidrug-resistant Escherichia coli. Gastrointest Endosc. 2015;82:477–83.10.1016/j.gie.2015.04.036
  • Hu W, Peng C, Luo W, et al. Graphene-based antibacterial paper. ACS Nano. 2010;4:4317–23.10.1021/nn101097v
  • Akhavan O, Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano. 2010;4:5731–6.10.1021/nn101390x
  • Lukowiak A, Kedziora A, Strek W. Historical perspective antimicrobial graphene family materials: progress, advances, hopes and fears. Adv Colloid Interf Sci. 2016;236(2016):101–112.10.1016/j.cis.2016.08.002
  • Khan MS, Abdelhamid HM, Wu HF. Near infrared (NIR) laser mediated surface activation of graphene oxide nanoflakes for efficient antibacterial, antifungal and wound healing treatment. Colloids Surf B. 2015;127:281–91.10.1016/j.jcis.2015.07.010
  • Chan CY, Guo J, Sun C, et al. A reduced graphene oxide-Au based electrochemical biosensor for ultrasensitive detection of enzymatic activity of botulinum neurotoxin A. Sens Actuat B. 2015;220:131–7.10.1016/j.snb.2015.05.052
  • Low SS, Tan MTT, Loh HS, et al. Facile hydrothermal growth graphene/ZnO nanocomposite for development of enhanced biosensor. Anal Chim Acta. 2016;903:131–41.10.1016/j.aca.2015.11.006
  • Yadav SK, Jung YC, Kim JH, et al. Mechanically robust, electrically conductive biocomposite films using antimicrobial chitosanfunctionalized graphenes. Part Part Syst Charact. 2013;30:721–7.10.1002/ppsc.v30.8
  • Zhao J, Deng B, Lv M, et al. Graphene oxide-based antibacterial cotton fabrics. Adv Healthcare Mater. 2013;2:1259–66.10.1002/adhm.v2.9
  • Huang X, Qi X, Boey F, et al. Graphene-based composites. Chem Soc Rev. 2012;41:666–686.10.1039/C1CS15078B
  • Huang X, Yin Z, Wu S, et al. Graphene-based materials: synthesis, characterization, proper- ties, and applications. Small. 2011;7:1876–1902.10.1002/smll.201002009
  • Yuan W, Shi G. Graphene-based gas sensors. J Mater Chem. 2013;A1:10078–10091.10.1039/c3ta11774j
  • Schedin F, Geim A, Morozov S, et al. Detection of individual gas molecules adsorbed on graphene. Nat Mater. 2007;6:652–655.10.1038/nmat1967
  • Huang X, Zeng Z, Fan Z, et al. Graphene-based electrodes. Adv. Mater. 2012;24:5979–6004.10.1002/adma.v24.45
  • He Q, Wu S, Yin Z, et al. Graphene-based electronic sensors. Chem Sci. 2012;3:1764–1772.10.1039/c2sc20205 k
  • Rumyantsev S, Liu G, Shur MS, et al. Selective gas sensing with a single pristine graphene transistor. Nano Lett. 2012;12:2294–2298.10.1021/nl3001293
  • Hoek G, Brunekreef B, Fischer P, et al. The association between air pollution and heartfailure, arrhythmia, embolism, thrombo-sis, and other cardiovascular causes of death in a time series study. Epidemiology. 2001;12:355–357.10.1097/00001648-200105000-00017
  • Liu H, Li M, Voznyy O, et al. Physically flexible, rapid-response gas sensor based on colloidal quantum dot solids. Adv. Mater. 2014;26:2718–2724.10.1002/adma.201304366
  • Su P-G, Pan T-T. Fabrication of a room-temperature NO2 gas sensor based onWO3 films and WO3/MWCNT nanocomposite films by combining polyol process with metal organic decomposition method. Mater Chem Phys. 2011;125:351–357.10.1016/j.matchemphys.2010.11.001
  • Zhang C, VanOverschelde O, Boudiba A, et al. Improvement of sensing characteristics of radio-frequency sputtered tungsten oxide films through surface modification by laser irradiation. Mater Chem Phys. 2012;133:588–591.10.1016/j.matchemphys.2012.01.116
  • Wang L, Han B, Dai L, et al. An amperometric NO2 sensor based on La10Si5NbO27.5 electrolyte and nano-structured CuO sensing electrode. J Hazard Mater. 2013;262:545–553.10.1016/j.jhazmat.2013.08.055
  • Zhang H, Wang L, Zhang T. Reduced graphite oxide/SnO2/Au hybrid nanomaterials for NO2 sensing performance at relatively low operating temperature. RSC Adv. 2014;4:57436–57441.
  • Chen L, Wu B, Guo L, et al. A single- nanoparticle NO2 gas sensor constructed using active molecular plasmo-nics. Chem Commun. 2015;51:1326–1329.10.1039/C4CC08395D
  • Yavari F, Koratkar N. Graphene-based chemical sensors. J Phys Chem Lett. 2012;3:1746–1753.10.1021/jz300358t
  • Dua V, Surwade SP, Ammu S, et al. All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew Chem Int Ed. 2010;49:2154–2157.10.1002/anie.v49:12
  • Deng S, Tjoa V, Fan HM, et al. Reduced graphene oxide conjugated Cu2O nano wire mesocrystals for high-performance NO2 gas sensor. J Am Chem Soc. 2012;134:4905–4917.10.1021/ja211683 m
  • Han TH, Huang YK, Tan AT, et al. Steam etched porous graphene oxide network for chemical sensing. J Am Chem Soc. 2011;133:15264–15267.10.1021/ja205693t
  • Yuan W, Liu A, Huang L, et al. High-performance NO2 sensors based on chemically modified graphene. Adv Mater. 2013;25:766–771.10.1002/adma.201203172
  • Tasis D, Tagmatarchis N, Bianco A, et al. Chemistry of carbon nanotubes. Chem Rev. 2006;106:1105–1136.10.1021/cr050569o
  • Yuan W, Huang L, Zhou Q, et al. Ultrasensitive and selective nitrogen dioxide sensor based on self-assembled graphene/polymer composite nano fibers. ACS Appl Mater Interf. 2014;6:17003–17008.
  • Terrones M, Martín O, González M, et al. Interphases in graphene polymer-based nanocomposites: achievements and challenges. Adv Mater. 2011;23:5302–5310.10.1002/adma.v23.44
  • Su Q, Pang S, Alijani V, et al. Composites of graphene with large aromatic molecules. Adv Mater. 2009;21:3191–3195.10.1002/adma.v21:31
  • Stankovich S, Piner RD, Chen X, et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium4-styrenesulfo- nate). J Mater Chem. 2006;16:155–158.10.1039/B512799H
  • Li Y, Deng C, Yang M. Facilely prepared composites of polyelectrolytes and graphene as the sensing materials for the detection of very low humidity. Sens Actuat B: Chem. 2014;194:51–58.10.1016/j.snb.2013.12.080
  • Yang Y, Li S, Yang W, et al. Insitu polymerization deposition of porous conducting polymer on reduced graphene oxide for gas sensor. ACS Appl Mater Interf. 2014;6:13807–13814.
  • Jang HD, Kim SK, et al. 3D label-free prostate specific antigen (PSA) immunosensor based on graphene–gold composites. Biosens Bioelectron. 2015;63:546–551.10.1016/j.bios.2014.08.008
  • Kang X, Wang J, et al. Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectron. 2009;25:901–905.10.1016/j.bios.2009.09.004
  • Guo S, Wen D, et al. Platinum nanoparticle ensemble-on-graphene hybridnanosheet: one-pot, rapid synthesis, and used as new electrode material for electrochemical sensing. ACS Nano. 2010;4:3959–3968.10.1021/nn100852 h
  • Shan C, Yang H, et al. Graphene/AuNPs/chitosan nano-composites film for glucose biosensing. Biosens Bioelectron. 2010;25:1070–1074.10.1016/j.bios.2009.09.024
  • Shi F, Zheng W, et al. Application of graphene–copper sulfide nano-composite modified electrode for electrochemistry and electro-catalysis of hemoglobin. Biosens Bioelectron. 2015;64:131–137.10.1016/j.bios.2014.08.064
  • Al-Amin C, Karabiyik M, Pala N. Fabrication of graphene field-effect transistor with field controlling electrodes to improve fT. Microelectron Eng. 2016;164:71–74.10.1016/j.mee.2016.07.011
  • Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater. 2010;22:3906.10.1002/adma.201001068
  • Bai H, Li C, Shi G. Functional composite materials based on chemically converted graphene. Adv Mater. 2011;23:1089.10.1002/adma.201003753
  • Abergel DSL, Apalkov V, Berashevich J, et al. Properties of graphene: a theoretical perspective. Adv Phys. 2010;59:261.10.1080/00018732.2010.487978
  • Huang X, Yin Z, Wu S, et al. Graphene-based materials: synthesis, characterization, properties, and applications. Small. 2011;7:1876.10.1002/smll.201002009
  • Yuan W, Chen J, Shi G. Nanoporous graphene materials. Mater Today. 2014;17:77.10.1016/j.mattod.2014.01.021
  • Shen G, Zhang X, Shen Y, et al. Immobilization of antibodies on aldehyde-functionalized polymer/graphene films for the fabrication of a label-free electrochemical immunosensor. J Electroanal Chem. 2015;759:67–71.10.1016/j.jelechem.2015.06.023
  • Zhang Y, Wei Y, Li H, et al. Simple fabrication of free-standing ZnO/graphene/carbon nanotube composite anode for lithium-ion batteries. Mater Lett. 2016;184:235–238.
  • Yu G, Xie X, Pan L, et al. Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy. 2013;2:213–234.10.1016/j.nanoen.2012.10.006
  • Peng X, Peng L, Wu C, et al. Two dimensional nanomaterials for flexible supercapacitors. Chem Soc Rev. 2014;43:3303–3323.10.1039/c3cs60407a
  • Patil SJ, Lokhande CD. Fabrication and performance evaluation of rare earth lanthanum sulfide film for supercapacitor application: effect of air annealing. Mater Des. 2015;87:939–948.10.1016/j.matdes.2015.08.084
  • Yang J, Zeng C, Wei F, et al. Cobalt–carbon derived from zeolitic imidazolate framework on Ni foam as high-performance supercapacitor electrode material. Mater Des. 2015;83:552–556.10.1016/j.matdes.2015.06.077
  • Yang M, Zhong Y, Bao J, et al. Achieving battery-level energy density by constructing aqueous carbonaceous supercapacitors with hierarchical porous N-rich carbon materials. J Mater Chem A. 2015;3:11387–11394.10.1039/C5TA02584B
  • Hui X, Qian L, Harris G, et al. Fast fabrication of NiO@graphene composites for supercapacitor electrodes: Combination of reduction and deposition. Mater Des. 2016;109:242–250.10.1016/j.matdes.2016.07.072
  • Meng J, Cao Y, Suo Y, et al. Facile Fabrication of 3D SiO2@Graphene Aerogel Composites as Anode Material for Lithium Ion Batteries. Electrochim Acta. 2015;176:1001–1009.10.1016/j.electacta.2015.07.141
  • Fang L, Zhang B, Li W, et al. Fabrication of highly dispersed ZnO nanoparticles embedded in graphene nanosheets for high performance supercapacitors. Electrochim Acta. 2014;148:164–169.10.1016/j.electacta.2014.10.065
  • Park KW, Jung JH. Spectroscopic and electrochemical characteristics of a carboxylated graphene-ZnO composites. J Power Sources. 2012;199:379–385.10.1016/j.jpowsour.2011.10.016

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.