393
Views
12
CrossRef citations to date
0
Altmetric
Review Article

A review on the evaluation of formability in sheet metal forming

ORCID Icon &
Pages 458-485 | Accepted 14 Feb 2020, Published online: 04 Mar 2020

References

  • Keeler SP. Plastic instability and fracture in sheets stretched over rigid punches, (Doctoral dissertation, Massachusetts Institute of Technology). 1961.
  • Goodwin GM. Application of strain analysis to sheet metal forming problems in the press shop. SAE Trans. 1968 Jan 1:380–387.
  • Zhang R, Shao Z, Lin J. A review on modelling techniques for formability prediction of sheet metal forming. Int J Lightweight Mater Manuf. 2018 Sep 1;1(3):115–125.
  • Stoughton TB, Zhu X. Review of theoretical models of the strain-based FLD and their relevance to the stress-based FLD. Int J Plast. 2004 Aug 1;20(8–9):1463–1486.
  • Ablat MA, Qattawi A. Numerical simulation of sheet metal forming: a review. Int J Adv Manuf Technol. 2017 Mar 1;89(1–4):1235–1250.
  • Singh SK, Limbadri K, Singh AK, et al. Studies on texture and formability of Zircaloy-4 produced by pilgering route. J Mater Res Technol. 2019 Apr 1;8(2):2120–2129.
  • Zhang L, Wang J. Modeling the localized necking in anisotropic sheet metals. Int J Plast. 2012 Dec;1(39):103–118.
  • Min J, Stoughton TB, Carsley JE, et al. Compensation for process-dependent effects in the determination of localized necking limits. Int J Mech Sci. 2016 Oct;1(117):115–134.
  • Akpama HK, Bettaieb MB, Abed-Meraim F. Localized necking predictions based on rate-independent self-consistent polycrystal plasticity: bifurcation analysis versus imperfection approach. Int J Plast. 2017 Apr;1(91):205–237.
  • Mirnia MJ, Shamsari M. Numerical prediction of failure in single-point incremental forming using a phenomenological ductile fracture criterion. J Mater Process Technol. 2017 Jun;1(244):17–43.
  • Park N, Huh H, Yoon JW. Anisotropic fracture forming limit diagram considering non-directionality of the equi-biaxial fracture strain. Int J Solids Struct. 2018 Oct;15(151):181–194.
  • Gang FA, QJ LIU, LEI LP, et al. Comparative analysis between stress-and strain-based forming limit diagrams for aluminum alloy sheet 1060. Trans Nonferrous Met Soc China. 2012 Dec 1;22:s343–s349.
  • Yoshida K, Kuwabara T, Kuroda M. Path-dependence of the forming limit stresses in a sheet metal. Int J Plast. 2007 Mar 1;23(3):361–384.
  • Zeng D, Chappuis L, Xia ZC, et al. A path independent forming limit criterion for sheet metal forming simulations. SAE Int J Mater Manuf. 2008;1:809–817.
  • Stoughton TB, Yoon JW. Path independent forming limits in strain and stress spaces. Int J Solids Struct. 2012 Dec 1;49(25):3616–3625.
  • Grumbach M, Sanz G. Influence of various parameters on forming limit curves. Revue de Metallurgie. 1972;61:273–290.
  • Shi BQ, Liang J. Circular grid pattern based surface strain measurement system for sheet metal forming. Opt Lasers Eng. 2012 Sep 1;50(9):1186–1195.
  • Pandivelan C, Jeevanantham AK, Sathiyanarayanan C. Optimization study on incremental forming of sheet metal AA5052 for variable wall angle using CNC milling machine. Mater Today Proc. 2018 Jan 1;5(5):12832–12836.
  • ASTM E2218-15. Standard test method for determining forming limit curves. West Conshohocken, PA: ASTM International; 2015. www.astm.org
  • Ozturk F, Dilmec M, Turkoz M, Ece RE, Halkaci HS. Grid marking and measurement methods for sheet metal formability. In5th International Conference and Exhibition on Design and Production of MACHINES and DIES/MOLDS, Kuşadası, Aydın, Turkey, 2009 Jun 18;41-49.
  • Ji YH, Park JJ. Formability of magnesium AZ31 sheet in the incremental forming at warm temperature. J Mater Process Technol. 2008 May 26;201(1–3):354–358.
  • Satheeshkumar V, Narayanan RG. Experimental evaluation and prediction of formability of adhesive bonded steel sheets at different adhesive properties. J Test Eval. 2016 Jul 13;44(3):1294–1306.
  • Bandyopadhyay K, Basak S, Panda SK, et al. Use of stress based forming limit diagram to predict formability in two-stage forming of tailor welded blanks. Mater Des. 2015 Feb;15(67):558–570.
  • Prasad KS, Panda SK, Kar SK, et al. Microstructures, forming limit and failure analyses of inconel 718 sheets for fabrication of aerospace components. J Mater Eng Perform. 2017 Apr 1;26(4):1513–1530.
  • www.fmtisystems.com,FMTI SYSTEMS Inc., Hamilton, Ontario, Canada.
  • Ab Ghani AF, Ali MB, DharMalingam S, et al. Digital image correlation (DIC) technique in measuring strain using opensource platform Ncorr. J Adv Res Appl Mech. 2016;26(1):10–21.
  • Harilal RRamji M. Adaptation of Open Source 2D DIC Software Ncorr for Solid Mechanics Applications, Proceedings of 9th International Symposium on Advanced Science and Technology in Experimental Mechanics, 1–6 November 2014: New Delhi, India
  • Olufsen SN, Andersen ME, Fagerholt E. μDIC: an open-source toolkit for digital image correlation. SoftwareX. 2020 Jan 1;11:100391.
  • https://gitlab.com/damien.andre/pydic
  • Vanderesse N, Lagacé M, Bridier F, et al. An open source software for the measurement of deformation fields by means of digital image correlation. Microsc Microanal. 2013 Aug;19(S2):820–821.
  • Boesemann W, Godding R, Huette H. Photogrammetric measurement techniques for quality control in sheet metal forming. Int Arch Photogramm Remote Sens. 2000 May 1;33:PARTB5.
  • Khoo SW, Karuppanan S, Tan CS. A review of surface deformation and strain measurement using two-dimensional digital image correlation. Metrol Meas Syst. 2016 Sep 1;23(3):461–480.
  • McCormick NJ, Lord J. Digital image correlation. Mater Today. 2010 Dec;13(12):52–54.
  • Sutton MA, Orteu JJ, Schreier H. Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer-Verlag New York Inc; 2009 Apr 21.
  • Barnwal VK, Tewari A, Narasimhan K, et al. Effect of plastic anisotropy on forming behavior of AA-6061 aluminum alloy sheet. J Strain Anal Eng Des. 2016 Oct;51(7):507–517.
  • Omar A, Harisankar KR, Tewari A, et al. Study of fracture behaviour and strain path during tube hydrforming process. J Phys. 2016 Aug;734(3):032105.
  • Bhargava M, Tewari A, Mishra SK. Forming limit diagram of advanced high strength steels (AHSS) based on strain-path diagram. Mater Des. 2015 Nov 15;85:149–155.
  • Erichsen AM. A new test for thin sheets. Stahl und Eisen. 1914;34:879–882.
  • Olsen TY. Machines for ductility testing. Proc Am Soc Mater. 1920;20:398–403.
  • Hecker SS. A cup test for assessing stretchability. Metals Eng Q. 1974;14:30–36.
  • de Almeida L, Schön CG. Evaluation of the formability of 90/10 brass produced by different casting processes and investigation of the effect of forming limit diagram determination procedure. J Mater Res Technol. 2019 Sep 1;8(5):4163–4172.
  • Jovignot C. Method and testing device for the study the fracture of the sheet metals. Revue de Metallurgie. 1930;27:287–291.
  • Kotkunde N, Srinivasan S, Krishna G, et al. Influence of material models on theoretical forming limit diagram prediction for Ti–6Al–4V alloy under warm condition. Trans Nonferrous Met Soc China. 2016 Mar 1;26(3):736–746.
  • Nakazima K, Kikuma T, Hasuka K. Study on the formability of steel sheets. Yawata Tech Rep. 1968;264:8517–8530.
  • Marciniak Z, Kuczyński K. Limit strains in the processes of stretch-forming sheet metal. Int J Mech Sci. 1967 Sep 1;9(9):609–620.
  • International Standard ISO/DIS 12004-2. Metallic materials- sheet and strip- determination of forming limit curve-part 2: determination of forming limit curve in laboratory.
  • Zhang L, Min J, Carsley JE, et al. Experimental and theoretical investigation on the role of friction in nakazima testing. Int J Mech Sci. 2017 Nov 1;133:217–226.
  • Basak S, Prasad KS, Sidpara AM, et al. Single point incremental forming of AA6061 thin sheet: calibration of ductile fracture models incorporating anisotropy and post forming analyses. Int J Mater Form. 2019 Jul 1;12(4):623–642.
  • Ma BL, Wan M, Cai ZY, et al. Investigation on the forming limits of 5754-O aluminum alloy sheet with the numerical Marciniak–Kuczynski approach. Int J Mech Sci. 2018 Jul 1;142:420–431.
  • Prasad KS, Kamal T, Panda SK, et al. Finite element validation of forming limit diagram of IN-718 sheet metal. Mater Today Proc. 2015 Jan 1;2(4–5):2037–2045.
  • Basak S, Panda SK. Implementation of Yld96 anisotropy plasticity theory for estimation of polar effective plastic strain-based failure limit of pre-strained thin steels. Thin Walled Struct. 2018 May 1;126:26–37.
  • Keeler SP, Keeler SP, Brazier WG. Relationship between laboratory material characterization and press-shop formability. in:ProcConf on Microalloying. 1977;75:517–528.
  • Swift H. Plastic instability under plane stress. J Mech Phys Solids. 1952 Oct 1;1(1):1–8.
  • Hill RT. On discontinuous plastic states, with special reference to localized necking in thin sheets. J Mech Phys Solids. 1952 Oct 1;1(1):19–30.
  • Stören S, Rice JR. Localized necking in thin sheets. J Mech Phys Solids. 1975 Dec 1;23(6):421–441.
  • Hora P, Tong L, Berisha B. Modified maximum force criterion, a model for the theoretical prediction of forming limit curves. Int J Mater Form. 2013 Jun 1;6(2):267–279.
  • Hora P, Tong L Theoretical prediction of the influence of curvature and thickness on the FLC by the enhanced modified maximum force criterion. InProc. of the NUMISHEET 2008 Conf.; 2008 Sep; Interlaken, Switzerland.p. 205–210.
  • Hutchinson JW, Neale KW. Sheet necking-III. Strain-rate effects. In: Donald P Koistinen and Neng-Ming Wang. (Eds)., Mechanics of sheet metal forming. Springer, Boston, MA, 1978. p. 269–285.
  • Butuc MC, Gracio JJ, Da Rocha AB. A theoretical study on forming limit diagrams prediction. J Mater Process Technol. 2003 Dec 10;142(3):714–724.
  • Banabic D, Comsa S, Jurco P, et al. FLD theoretical model using a new anisotropic yield criterion. J Mater Process Technol. 2004 Dec 20;157:23–27.
  • Butuc MC, Banabic D, da Rocha AB, et al. The performance of Yld96 and BBC2000 yield functions in forming limit prediction. J Mater Process Technol. 2002 Sep 9;125:281–286.
  • Wang YW, Majlessi SA, Ning J, et al. The strain gradient approach for deformation localization and forming limit diagrams. J Mech Behav Mater. 1996;7(4):265–278.
  • Sing WM, Rao KP. Prediction of sheet-metal formability using tensile-test results. J Mater Process Technol. 1993 Feb 1;37(1–4):37–51.
  • Hashemi R, Mamusi H, Masoumi A. A simulation-based approach to the determination of forming limit diagrams. Proc Inst Mech Eng Part B. 2014 Dec;228(12):1582–1591.
  • Situ Q. A new approach to obtain forming limits of sheet materials (Doctoral dissertation).
  • Assempour A, Nejadkhaki HK, Hashemi R. Forming limit diagrams with the existence of through-thickness normal stress. Comput Mater Sci. 2010 May 1;48(3):504–508.
  • Narasimhan K, Wagoner RH. Finite element modeling simulation of in-plane forming limit diagrams of sheets containing finite defects. Metall Trans A. 1991 Nov 1;22(11):2655–2665.
  • Duan X, Jain M, Wilkinson DS. Development of a heterogeneous microstructurally based finite element model for the prediction of forming limit diagram for sheet material. Metall Mater Trans A. 2006 Dec 1;37(12):3489.
  • Wu PD, Graf A, MacEwen SR, et al. On forming limit stress diagram analysis. Int J Solids Struct. 2005 Apr 1;42(8):2225–2241.
  • Arrieux R, Boivin M, Le Maître F. Determination of the forming limit stress curve for anisotropic sheets. CIRP Ann Manuf Technol. 1987 Jan 1;36(1):195–198.
  • Kleemola HJ, Pelkkikangas MT. Effect of predeformation and strain path on the forming limits of steel, copper and brass. Sheet Met Ind. 1977;64(6):591–592.
  • He J, Zeng D, Zhu X, et al. Effect of nonlinear strain paths on forming limits under isotropic and anisotropic hardening. Int J Solids Struct. 2014;51(2):402–415.
  • Derov MJ, Kinsey BL, Tsukrov I The effect of model parameters on predicted stress-based failure criterion for sheet metal. InASME 2008 International Manufacturing Science and Engineering Conference collocated with the 3rd JSME/ASME International Conference on Materials and Processing. American society of mechanical engineers digital collection;Evanston, Illinois, USA. 2008 Jan 1; 571–576.
  • Paul SK. Theoretical analysis of strain-and stress-based forming limit diagrams. J Strain Anal Eng Des. 2013 Apr;48(3):177–188.
  • Tvergaard V, Needleman A. Analysis of the cup-cone fracture in a round tensile bar. Acta Metall. 1984 Jan 1;32(1):157–169.
  • Xue L. Constitutive modeling of void shearing effect in ductile fracture of porous materials. Eng Fract Mech. 2008 Jul 1;75(11):3343–3366.
  • Malcher L, Pires FA, De Sá JC. An extended GTN model for ductile fracture under high and low stress triaxiality. Int J Plast. 2014 Mar 1;54:193–228.
  • McClintock FA. Erratum:“A criterion for ductile fracture by the growth of holes”. J Appl Mech. 1968;35:363–371.
  • Clift SE, Hartley P, Sturgess CE, et al. Fracture prediction in plastic deformation processes. Int J Mech Sci. 1990 Jan 1;32(1):1–7.
  • Cockcroft MG, Latham DJ. Ductility and the workability of metals. J Inst Metals. 1968 Feb;96(1):33–39.
  • Rice JR, Tracey DM. On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids. 1969 Jun 1;17(3):201–217.
  • Brozzo P, Deluca B, Rendina R. A new method for the prediction of formability limits in metal sheets. In Proc. 7th biennal Conf. IDDR, Amsterdam, Oct 1972.
  • Chen CC, Oh SI, Kobayashi S. Ductile Fracture in Axisymmetric Extrusion and Drawing—Part 1: Deformation Mechanics of Extrusion and Drawing. ASME J. Eng. Ind. Feb 1979, 101(1): 23-35.
  • Ko YK, Lee JS, Huh H, et al. Prediction of fracture in hub-hole expanding process using a new ductile fracture criterion. J Mater Process Technol. 2007 Jun 12;187:358–362.
  • Johnson GR, Cook WH. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech. 1985;21(1):31–48.
  • Wilkins ML, Streit RD, Reaugh JE. Cumulative-strain-damage model of ductile fracture: simulation and prediction of engineering fracture tests. Lawrence Livermore National Lab., CA (USA); Science Applications, Inc., San Leandro, CA (USA), 1980 Oct 3.
  • Oyane M, Sato T, Okimoto K, et al. Criteria for ductile fracture and their applications. J Mech Working Technol. 1980 Apr 1;4(1):65–81.
  • Wierzbicki T, Bao Y, Lee YW, et al. Calibration and evaluation of seven fracture models. Int J Mech Sci. 2005 Apr 1;47(4–5):719–743.
  • Atkins AG, Mai YW. Crack and craze nucleation. In: Elastic and plastic fracture. Chichester: Ellis Horwood; 1985. p. 369–431.
  • Lou Y, Huh H, Lim S, et al. New ductile fracture criterion for prediction of fracture forming limit diagrams of sheet metals. Int J Solids Struct. 2012 Dec 1;49(25):3605–3615.
  • Deole AD, Barnett MR, Weiss M. The numerical prediction of ductile fracture of martensitic steel in roll forming. Int J Solids Struct. 2018 Jul 1;144:20–31.
  • Park N, Huh H, Nam JB, et al. Anisotropy effect on the fracture model of DP980 sheets considering the loading path. Int J Automot Technol. 2015 Feb 1;16(1):73–81.
  • Basak S, Panda SK. Necking and fracture limit analyses of different pre-strained sheet materials in polar effective plastic strain locus using Yld2000-2d yield model. J Mater Process Technol. 2019 May 1;267:289–307.
  • Basak S, Panda SK. Failure strains of anisotropic thin sheet metals: experimental evaluation and theoretical prediction. Int J Mech Sci. 2019 Feb 1;151:356–374.
  • Gorji M, Berisha B, Hora P, et al. Modeling of localization and fracture phenomena in strain and stress space for sheet metal forming. Int J Mater Form. 2016 Nov 1;9(5):573–584.
  • Isik K, Silva MB, Tekkaya AE, et al. Formability limits by fracture in sheet metal forming. J Mater Process Technol. 2014 Aug 1;214(8):1557–1565.
  • Park N, Huh H, Lim SJ, et al. Fracture-based forming limit criteria for anisotropic materials in sheet metal forming. Int J Plast. 2017 Sep 1;96:1–35.
  • Nguyen NT, Lee E, Lee MG, et al. Hydroformability assessment of AA6063 tubes using the polar effective plastic strain diagram. Proc Inst Mech Eng Part B. 2015 Apr;229(4):647–653.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.