871
Views
39
CrossRef citations to date
0
Altmetric
Review Article

Metallic implants with properties and latest production techniques: a review

, & ORCID Icon
Pages 405-440 | Accepted 14 Feb 2020, Published online: 09 Mar 2020

References

  • Almouemen N, Kelly HM, O'Leary C,“ Tissue Engineering: Understanding the Role of Biomaterials and Biophysical Forces on Cell Functionality Through Computational and Structural Biotechnology Analytical Methods“, Computational and Structural Biotechnology Journal, 2019 Apr 17;17:591-598. doi: https://doi.org/10.1016/j.csbj.2019.04.008. eCollection 2019.
  • Morhardt DR, Mauney JR, Estrada CR. Role of biomaterials in surgery. Oxford: Academic Press; 2019. DOI:https://doi.org/10.1016/B978-0-12-801238-3.65845-2.
  • Ni J, Ling H, Zhang S, et al. Three-dimensional printing of metals for biomedical applications. Mater Today Bio. 2019;3:100024.
  • Avila JD, Bose S, Bandyopadhyay A. “Additive manufacturing of titanium and titanium alloys for biomedical applications“,Titanium in Medical and Dental Applications,  Woodhead Publishing Series in Biomaterials 2018, 325-343. doi:https://doi.org/10.1016/b978-0-12-812456-7.00015-9.
  • Hussein MA, Mohammed AS, Al-Aqeeli N. Wear characteristics of metallic biomaterials: a review. Materials (Basel). 2015;8:2749–2768.
  • Zhang LC, Chen LY. A review on biomedical titanium alloys: recent progress and prospect. Adv Eng Mater. 2019;21:1–29.
  • Yuan L, Ding S, Wen C. Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: a review. Bioact Mater. 2019;4:56–70.
  • Pal S, Lojen G, Kokol V, et al. Evolution of metallurgical properties of Ti-6Al-4V alloy fabricated in different energy densities in the selective laser melting technique. J Manuf Process. 2018;35:538–546.
  • Soro N, Attar H, Brodie E, et al. Evaluation of the mechanical compatibility of additively manufactured porous Ti–25Ta alloy for load-bearing implant applications. J Mech Behav Biomed Mater. 2019;97:149–158.
  • Saini M. Implant biomaterials: a comprehensive review. World J Clin Cases. 2015;3:52.
  • Romanò CL, Romanò D, Meani E, et al. Two-stage revision surgery with preformed spacers and cementless implants for septic hip arthritis: a prospective, non-randomized cohort study. BMC Infect Dis. 2011;11. DOI:https://doi.org/10.1186/1471-2334-11-129LK.
  • Munns JJ, Matthias RC, Zarezadeh A, et al. Outcomes of revisions for failed trapeziometacarpal joint arthritis surgery. J Hand Surg Am. 2019;44:798.e1-798.e9.
  • R. Q, A. S, S.B. A. Revision total ankle arthroplasty results in similar outcomes to primary total ankle arthroplasty. J Orthop Res. 2016. DOI:https://doi.org/10.1002/jor.23247.
  • Queen R, Schmitt A, Adams SB. Revision total ankle arthroplasty results in similar outcomes to primary total ankle arthroplasty. J Orthop Res. 2016. DOI:https://doi.org/10.1002/jor.23247
  • Wasz ML, Brotzen FR, McLellan RB, et al. Effect of oxygen and hydrogen on mechanical properties of commercial purity titanium. Int Mater Rev. 1996;41:1–12.
  • Nayak SK, Hung CJ, Sharma V, et al. Insight into point defects and impurities in titanium from first principles. Npj Comput Mater. 2018;4. DOI:https://doi.org/10.1038/s41524-018-0068-9.
  • Banerjee D, Williams JC. Perspectives on titanium science and technology. Acta Mater. 2013;61:844–879.
  • Flatow EL, Harrison AK. A history of reverse total shoulder arthroplasty. Clin Orthop Relat Res. 2011;469:2432–2439.
  • Oldani C, Dominguez A. Titanium as a biomaterial for implants. Recent Adv Arthroplast. 2012. DOI:https://doi.org/10.5772/27413
  • Manivasagam G, Dhinasekaran D, Rajamanickam A. Biomedical implants: corrosion and its prevention - A review~!2009-12-22~!2010-01-20~!2010-05-25~! Recent Patents Corros Sci. 2010;2:40–54.
  • Estrin Y, Kim HE, Lapovok R, et al. Mechanical strength and biocompatibility of ultrafine-grained commercial purity titanium. Biomed Res Int. 2013;2013:1–6.
  • Purcek G, Yapici GG, Karaman I, et al. Effect of commercial purity levels on the mechanical properties of ultrafine-grained titanium. Mater Sci Eng A. 2011;528:2303–2308.
  • Favard L. Revision of total shoulder arthroplasty. Orthop Traumatol Surg Res. 2013;99:S12-S21.
  • Narayan R., Biomedical materials. Springer, New York, 2009, ISBN 978-0-387-84871-6.https://www.jnjmedicaldevices.com/en-US/treatment/hip-replacement
  • Long, M., & Rack, H. J. (1998, September). Titanium alloys in total joint replacement - A materials science perspective. Biomaterials. Elsevier Sci Ltd. https://doi.org/https://doi.org/10.1016/S0142-9612(97)00146-4.
  • Geetha M, Singh AK, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants - A review. Prog Mater Sci. 2009;54:397–425.
  • Mueller E, Kammula R, Marlowe D. Regulation of “Biomaterials” and medical devices. MRS Bull. 1991;16:39–41.
  • Qian, Ma, Sam Froes, Francis H.,Titanium powder metallurgy: Science, technology and applications, 2015. DOI:https://doi.org/10.1016/C2013-0-13619-7, ISBN: 9780128009109.
  • Bidaux JE, Closuit C, Rodriguez-Arbaizar M, et al. Metal injection moulding of low modulus Ti-Nb alloys for biomedical applications. Powder Metall. 2013;56:263–266.
  • Parthasarathy J, Starly B, Raman S, et al. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). J Mech Behav Biomed Mater. 2010;3:249–259.
  • Shahali H, Jaggessar A, Yarlagadda PKDV. Recent advances in manufacturing and surface modification of titanium orthopaedic applications. Procedia Eng. 2017;174:1067–1076.
  • Long M, Rack HJ. Titanium alloys in total joint replacement - A materials science perspective. Biomaterials. 1998;19:1621–1639.
  • Malyshev VN. Tribological aspects in friction stir welding and processing. Adv Frict Weld Process. 2014. DOI:https://doi.org/10.1533/9780857094551.329
  • Byeli AV, Kukareko VA, Kononov AG. Titanium and zirconium based alloys modified by intensive plastic deformation and nitrogen ion implantation for biocompatible implants. J Mech Behav Biomed Mater. 2012;6:89–94.
  • Figueiredo RB, Eduardo ER, Zhao X, et al. Improving the fatigue behavior of dental implants through processing commercial purity titanium by equal-channel angular pressing. Mater Sci Eng A. 2014;619:312–318.
  • Oliveira DP, Prokofiev E, Sanches LFR, et al. Surface chemical treatment of ultrafine-grained Ti-6Al-7Nb alloy processed by severe plastic deformation. J Alloys Compd. 2015;643:S241-S245.
  • Ching HA, Choudhury D, Nine MJ, et al. Effects of surface coating on reducing friction and wear of orthopaedic implants. Sci Technol Adv Mater. 2014;15:014402.
  • Weißmann V, Drescher P, Bader R, et al. Comparison of single Ti6Al4V struts made using selective laser melting and electron beam melting subject to part orientation. Metals (Basel). 2017;7:91.
  • Habijan T, Haberland C, Meier H, et al. The biocompatibility of dense and porous Nickel-Titanium produced by selective laser melting. Mater Sci Eng C. 2013;33:419–426.
  • Wysocki B, Maj P, Sitek R, et al. Laser and electron beam additive manufacturing methods of fabricating titanium bone implants. Appl Sci. 2017;7:657.
  • Lv J, Jia Z, Li J, et al. Electron beam melting fabrication of porous Ti6Al4V scaffolds: cytocompatibility and osteogenesis. Adv Eng Mater. 2015;17:1391–1398.
  • Wang H, Zhao B, Liu C, et al. A comparison of biocompatibility of a titanium alloy fabricated by electron beam melting and selective laser melting. PLoS One. 2016. DOI:https://doi.org/10.1371/journal.pone.0158513
  • Bertol LS, Júnior WK, da Silva FP, et al. Medical design: direct metal laser sintering of Ti-6Al-4V. Mater Des. 2010;31:3982–3988.
  • Traini T, Mangano C, Sammons RL, et al. Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Dent Mater. 2008. DOI:https://doi.org/10.1016/j.dental.2008.03.029
  • Shibo G, Xuanhui Q, Xinbo H, et al. Powder injection molding of Ti-6Al-4V alloy. J Mater Process Technol. 2006;173:310–314.
  • Xu G, Fu X, Du C, et al. Biomechanical comparison of mono-segment transpedicular fixation with short-segment fixation for treatment of thoracolumbar fractures: A finite element analysis. Proc Inst Mech Eng Part H J Eng Med. 2014;228:1005–1013.
  • Ingham E, Fisher J. Biological reactions to wear debris in total joint replacement. Proc Inst Mech Eng Part H J Eng Med. 2000;214:21–37.
  • Kamachi Mudali U, Sridhar TM, Baldev RAJ. Corrosion of bio implants. Sadhana - Acad Proc Eng Sci. 2003. DOI:https://doi.org/10.1007/BF02706450
  • Hudetz D, Ursic Hudetz S, Harris LG, et al. Weak effect of metal type and ica genes on staphylococcal infection of titanium and stainless steel implants. Clin Microbiol Infect. 2008;14:1135–1145.
  • Niinomi M, Nakai M, Hieda J. Development of new metallic alloys for biomedical applications. Acta Biomater. 2012;8:3888–3903.
  • Gossart A, Gand A, Ollivier V, et al. Coating of cobalt chrome substrates with thin films of polar/hydrophobic/ionic polyurethanes: characterization and interaction with human immunoglobulin G and fibronectin. Colloids Surf B Biointerfaces. 2019;179:114–120.
  • Wennerberg A, Jimbo R, Albrektsson T. Implant surfaces and their biological and clinical impact. 2015 https://doi.org/https://doi.org/10.1007/978-3-662-45379-7, Online ISBN 978-3-662-45379-7.
  • Ribeiro ALR, Junior RC, Cardoso FF, et al. Mechanical, physical, and chemical characterization of Ti-35Nb-5Zr and Ti-35Nb-10Zr casting alloys. J Mater Sci Mater Med. 2009;20:1629–1636.
  • Rack HJ, Qazi JI. Titanium alloys for biomedical applications. Mater Sci Eng C. 2006;26:1269–1277.
  • Henriques VAR, Galvani ET, Petroni SLG, et al. Production of Ti-13Nb-13Zr alloy for surgical implants by powder metallurgy. J Mater Sci. 2010;45:5844–5850.
  • Radenković G, Petković D. Metallic biomaterials. Biomater Clin Pract Adv Clin Res Med Devices. 2017. DOI:https://doi.org/10.1007/978-3-319-68025-5_8
  • Alam MO, Haseeb ASMA. Response of Ti-6Al-4V and Ti-24Al-11Nb alloys to dry sliding wear against hardened steel. Tribol Int. 2002;643:S241-S245.
  • Nag S, Banerjee R. Materials for medical devices, fundamentals of medical implant materials. ASM Handb. 2012.ISBN: 978-1-61503-827-5.
  • Niinomi M. Metallic biomaterials. J Artif Organs. 2008;11:105–110.
  • Li Y, Yang C, Zhao H, et al. New developments of ti-based alloys for biomedical applications. Materials (Basel). 2014. DOI:https://doi.org/10.3390/ma7031709
  • Burstein AH, Reilly DT, Martens M. Aging of bone tissue: mechanical properties. J Bone Jt Surg - Ser A. 1976;58:82–86.
  • Leng H, Reyes MJ, Dong XN, et al. Effect of age on mechanical properties of the collagen phase in different orientations of human cortical bone. Bone. 2013;55:288–291.
  • Nyman JS, Roy A, Reyes MJ, et al. Mechanical behavior of human cortical bone in cycles of advancing tensile strain for two age groups. J Biomed Mater Res - Part A. 2009;89A:521–529.
  • Chocron S, Nicolella D, Nicholls AE, et al. Dynamic testing of old and young baboon cortical bone with numerical validation. EPJ Web Conf. 2012;26:03004.
  • Evans FG. Mechanical properties and histology of cortical bone from younger and older men. Anat Rec. 1976;185:1–11.
  • Russo CR, Lauretani F, Bandinelli S, et al. Aging bone in men and women: beyond changes in bone mineral density. Osteoporos Int. 2003;14:531–538.
  • Wall JC, Chatterji SK, Jeffery JW. Age-related changes in the density and tensile strength of human femoral cortical bone. Calcif Tissue Int. 1979;27:105–108.
  • Zioupos P, Currey JD. Changes in the stiffness, strength, and toughness of human cortical bone with age. Bone. 1998;22:57–66.
  • McCalden RW, McGlough JA, Barker MB, et al. Age-related changes in the tensile properties of cortical bone. The relative importance of changes in porosity, mineralization and microstructure. J Bone Jt Surg - Ser A. 1993;75:1193–1205.
  • McCalden. Age-Related changes in the tensile properties of cortical bone. J Bone Jt Surg. 1993;75:1193–1205.
  • Carter DR, Spengler DM. Mechanical properties and composition of cortical bone. Clin Orthop Relat Res. 1978;&NA;:192–217.
  • Uhthoff HK, Poitras P, Backman DS. Internal plate fixation of fractures: short history and recent developments. J Orthop Sci. 2006;11:118–126.
  • McKee GK, Watson-Farrar J. Replacement of arthritic hips by the McKee-Farrar prosthesis. J Bone Jt Surg - Ser B. 1966;48-B:245–259.
  • Disegi JA, Eschbach L. Stainless steel in bone surgery. Injury. 2000. DOI:https://doi.org/10.1016/S0020-1383(00)80015-7
  • Niinomi M. Recent metallic materials for biomedical applications. Metall Mater Trans A. 2002;33:477–486.
  • Uggowitzer PJ, Magdowski R, Speidel MO. Nickel free high nitrogen austenitic steels. ISIJ Int. 1996;36:901–908.
  • Cobalt-base alloys for biomedical applications. 1999;63:101–124.
  • ARVIDSON K, COTTLER‐FOX M, HAMMARLUND E, et al. Cytotoxic effects of cobalt‐chromium alloys on fibroblasts derived from human gingiva. Eur J Oral Sci. 1987;95:356–363.
  • Chiba A, Kumagai K, Nomura N, et al. Pin-on-disk wear behavior in a like-on-like configuration in a biological environment of high carbon cast and low carbon forged Co-29Cr-6Mo alloys. Acta Mater. 2007;55:1309–1318.
  • Marti A. Cobalt-base alloys used in surgery. Injury. 2000;31:D18-D21.
  • Davis JR. Nickel, cobalt, and their alloys. (2000) ASM International: Materials Park, OH. DOI: https://doi.org/10.1361/ncta2000p013, ISBN: 978-0-87170-685-0.
  • Mischler S, Muñoz AI. Wear of CoCrMo alloys used in metal-on-metal hip joints: A tribocorrosion appraisal. Wear. 2013;297:1081–1094.
  • Niinomi M. Metallic biomaterials. J Artif Organs. 2008;11:105.
  • Niinomi M, Nakai M. Titanium-based biomaterials for preventing stress shielding between implant devices and bone. Int J Biomater. 2011;2011:1–10.
  • Rautray TR, Narayanan R, Kim KH. Ion implantation of titanium based biomaterials. Prog Mater Sci. 2011;56:1137–1177.
  • Taddei EB, Henriques VAR, Silva CRM, et al. Production of new titanium alloy for orthopedic implants. Mater Sci Eng C. 2004;24:683–687.
  • Wang X, Xu S, Zhou S, et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials. 2016. DOI:https://doi.org/10.1016/j.biomaterials.2016.01.012.
  • Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed Mater. 2008;1:30–42.
  • Kirmanidou Y, Sidira M, Drosou ME, et al. New Ti-alloys and surface modifications to improve the mechanical properties and the biological response to orthopedic and dental implants: a review. Biomed Res Int. 2016;2016:1–21.
  • Kuroda D, Niinomi M, Morinaga M, et al. Design and mechanical properties of new β type titanium alloys for implant materials. Mater Sci Eng A. 1998;243:244–249.
  • Brailovski V, Prokoshkin S, Gauthier M, et al. Bulk and porous metastable beta Ti-Nb-Zr(Ta) alloys for biomedical applications. Mater Sci Eng C. 2011;31:643–657.
  • Pippenger BE, Rottmar M, Kopf BS, et al. Surface modification of ultrafine-grained titanium: influence on mechanical properties, cytocompatibility, and osseointegration potential. Clin Oral Implants Res. 2019;30:99–110.
  • Wu B, Xiong S, Guo Y, et al. Tooth-colored bioactive titanium alloy prepared with anodic oxidation method for dental implant application. Mater Lett. 2019;248:134–137.
  • Koizumi H, Takeuchi Y, Imai H, et al. Application of titanium and titanium alloys to fixed dental prostheses. J Prosthodont Res. 2019;63:266–270.
  • Jackson MJ, Ahmed W, editors. Titanium and titanium alloy applications in medicine. Surf Eng Surg Tools Med Devices. Boston, MA: Springer US. 2007;533–576. DOI:https://doi.org/10.1007/978-0-387-27028-9_15.
  • Mohammed MT, Khan ZA, Siddiquee AN. Surface modifications of titanium materials for developing corrosion behavior in human body environment: a review. Procedia Mater Sci. 2014;6:1610–1618.
  • Liu W, Liu S, Wang L. Surface modification of biomedical titanium alloy: micromorphology, microstructure evolution and biomedical applications. Coatings. 2019;9:249.
  • Takemoto M, Fujibayashi S, Neo M, et al. Mechanical properties and osteoconductivity of porous bioactive titanium. Biomaterials. 2005;26:6014–6023.
  • Bandyopadhyay A, Espana F, Balla VK, et al. Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants. Acta Biomater. 2010;6:1640–1648.
  • Sevilla P, Sandino C, Arciniegas M, et al. Evaluating mechanical properties and degradation of YTZP dental implants. Mater Sci Eng C. 2010;30:14–19.
  • Hansson S, Norton M. The relation between surface roughness and interfacial shear strength for bone-anchored implants. A mathematical model. J Biomech. 1999;32:829–836.
  • Castellani C, Lindtner RA, Hausbrandt P, et al. Bone-implant interface strength and osseointegration: biodegradable magnesium alloy versus standard titanium control. Acta Biomater. 2011;7:432–440.
  • Niinomi M. Mechanical properties of biomedical titanium alloys. Mater Sci Eng A. 1998;243:231–236.
  • Poumarat G, Squire P. Comparison of mechanical properties of human, bovine bone and a new processed bone xenograft. Biomaterials. 1993;14:337–340.
  • Liebschner MAK. Biomechanical considerations of animal models used in tissue engineering of bone. Biomaterials. 2004;25:1697–1714.
  • Zadpoor AA. Mechanical performance of additively manufactured meta-biomaterials. Acta Biomater. 2019;85:41–59.
  • Ahmadi SM, Hedayati R, Li Y, et al. Fatigue performance of additively manufactured meta-biomaterials: the effects of topology and material type. Acta Biomater. 2018;65:292–304.
  • Hedayati R, Sadighi M, Mohammadi-Aghdam M, et al. Mechanical properties of regular porous biomaterials made from truncated cube repeating unit cells: analytical solutions and computational models. Mater Sci Eng C. 2016;60:163–183.
  • Wu S, Liu X, Yeung KWK, et al. Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng R Rep. 2014;80:1–36.
  • Tavares JCM, Cornélio DA, da Silva NB, et al. Effect of titanium surface modified by plasma energy source on genotoxic response in vitro. Toxicology. 2009;262:138–145.
  • Gajski G, Jelčić Ž, Oreščanin V, et al. Physico-chemical characterization and the in vitro genotoxicity of medical implants metal alloy (TiAlV and CoCrMo) and polyethylene particles in human lymphocytes. Biochim Biophys Acta Gen Subj. 2014. DOI:https://doi.org/10.1016/j.bbagen.2013.10.015
  • Li M, Ren L, Li LH, et al. Cytotoxic effect on osteosarcoma MG-63 cells by degradation of magnesium. J Mater Sci Technol. 2014. DOI:https://doi.org/10.1016/j.jmst.2014.04.010.
  • Pellier J, Geringer J, Forest B. Fretting-corrosion between 316L SS and PMMA: influence of ionic strength, protein and electrochemical conditions on material wear. Application to orthopaedic implants. Wear. 2011;271:1563–1571.
  • Goodman SB, Ma T, Chiu R, et al. Effects of orthopaedic wear particles on osteoprogenitor cells. Biomaterials. 2006;27:6096–6101.
  • Alrabeah GO, Brett P, Knowles JC, et al. The effect of metal ions released from different dental implant-abutment couples on osteoblast function and secretion of bone resorbing mediators. J Dent. 2017;66:91–101.
  • Granchi D, Cenni E, Ciapetti G, et al. Cell death induced by metal ions: necrosis or apoptosis? J Mater Sci Mater Med. 1998;9:31–37.
  • Krischak GD, Gebhard F, Mohr W, et al. Difference in metallic wear distribution released from commercially pure titanium compared with stainless steel plates. Arch Orthop Trauma Surg. 2004;124:104–113.
  • Sansone V, Pagani D, Melato M. The effects on bone cells of metal ions released from orthopaedic implants. A review. Clin Cases Miner Bone Metab. 2013. DOI:https://doi.org/10.11138/ccmbm/2013.10.1.034.
  • Swanberg DF, Henry MD. Avoiding implant overload. Implant Soc. 1995 The Implant Society : [periodical], ISSN: 10593489.
  • Borba M, Deluiz D, Lourenço EJV, et al. Risk factors for implant failure: a retrospective study in an educational institution using GEE analyses. Braz Oral Res. 2017;31. DOI:https://doi.org/10.1590/1807-3107BOR-2017.vol31.0069.
  • Coulthard P, Esposito M, Slater M, et al. Prevention. Part 5: preventive strategies for patients requiring osseointegrated oral implant treatment. Br Dent J. 2003;195:187–194.
  • Hobkirk JA, Havthoulas TK. The influence of mandibular deformation, implant numbers, and loading position on detected forces in abutments supporting fixed implant superstructures. J Prosthet Dent. 1998;80:169–174.
  • Hansson S On the role of surface roughness for load bearing bone implants:\rthe retention potential of a micro-pitted surface as a function of pit size, pit shape and pit density. 1991.
  • Fehring TK, Murphy JA, Hayes TD, et al. Factors influencing wear and osteolysis in press-fit condylar modular total knee replacements. Clin Orthop Relat Res. 2004;428:40–50.
  • Mikulak SA, Mahoney OM, Dela Rosa MA, et al. Loosening and osteolysis with the press-fit condylar posterior-cruciate-substituting total knee replacement. J Bone Jt Surg - Ser A. 2001;83:398–403.
  • Jacobs JJ, Gilbert JL, Urban RM. Corrosion of metal orthopaedic implants. J Bone Jt Surg - Ser A. 1998;80:268–282.
  • Stachowiak GW, Batchelor AW. Engineering tribology. 4th ed. 2013. ISBN: 978-0-12-3970473, Butterworth-Heinemann, https://doi.org/https://doi.org/10.1016/C2011-0-07515-4.
  • Liu X, Chu PK, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R Rep. 2004;47:49–121.
  • Sankara Narayanan TSN, Park IS, Lee MH. Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: prospects and challenges. Prog Mater Sci. 2014;60:1–71.
  • Ashassi-Sorkhabi H, Rafizadeh SH. Effect of coating time and heat treatment on structures and corrosion characteristics of electroless Ni-P alloy deposits. Surf Coat Technol. 2004;176:318–326.
  • Goriainov V, Cook R, Latham JM, et al. Bone and metal: an orthopaedic perspective on osseointegration of metals. Acta Biomater. 2014;10:4043–4057.
  • Cotton JD, Briggs RD, Boyer RR, et al. State of the art in beta titanium alloys for airframe applications. JOM. 2015;67:1281–1303.
  • Okazaki Y. On the effects of hot forging and hot rolling on the microstructural development and mechanical response of a biocompatible Ti alloy. Materials (Basel). 2012;5:1439–1461.
  • Saxena KK, Chetan K, Vaibhav K, et al. Constitutive analysis of Zr-1Nb alloy for different phase regions. Mater Perform Charact. 2019;8:20190020.
  • Saxena KK, Pancholi V, Jha SK, et al. A novel approach to understand the deformation behavior in two phase region using processing map. J Alloys Compd. 2017;706:511–519.
  • Saxena KK, Pancholi V, Chaudhari GP, et al. Hot deformation behaviour and microstructural evaluation of Zr-1Nb alloy. Mater Sci Forum. 2017;890:319–322.
  • Saxena KK, Suresh KS, Kulkarni RV, et al. Hot deformation behavior of Zr-1Nb alloy in two-phase region –microstructure and mechanical properties. J Alloys Compd. 2018;741:281–292.
  • Clément N, Lenain A, Jacques PJ. Mechanical property optimization via microstructural control of new metastable beta titanium alloys. JOM. 2007;59:50–53.
  • Saxena KK, Sonkar S, Pancholi V, et al. Hot deformation behavior of Zr-2.5Nb alloy: A comparative study using different materials models. J Alloys Compd. 2016;662:94–101.
  • Kumar B, Saxena KK, Dey SR, et al. Processing map-microstructure evolution correlation of hot compressed near alpha titanium alloy (TiHy 600). J Alloys Compd. 2017. DOI:https://doi.org/10.1016/j.jallcom.2016.08.301
  • Kodli BK, Saxena KK, Dey SR, et al. Texture studies of hot compressed near alpha titanium alloy (IMI 834) at 1000°C with different strain rates. IOP Conf Ser Mater Sci Eng. 2015;82:012032.
  • Andani MT, Shayesteh Moghaddam N, Haberland C, et al. Metals for bone implants. Part 1. Powder metallurgy and implant rendering. Acta Biomater. 2014;10:4058–4070.
  • Bram DM, Ebel DT, Wolff M, et al. Applications of powder metallurgy in biomaterials. Adv Powder Metall Prop Process Appl. 2013. DOI:https://doi.org/10.1533/9780857098900.4.520
  • Niinomi M, Narushima T, Nakai M. Advantages in metallic biomaterials, processing and applications. Springer-Verlag Berlin Heidelberg. 2015.
  • Behrens BA, Stonis M, Blohm T, et al. Investigating the effects of cross wedge rolling preforming operation and die forging with flash brakes on forging titanium hip implants. Int J Mater Form. 2018;11:67–76.
  • Merson D, Vasiliev E, Markushev M, et al. On the corrosion of ZK60 magnesium alloy after severe plastic deformation. Lett Mater. 2017;7:421–427.
  • Sheremetyev V, Kudryashova A, Cheverikin V, et al. Hot radial shear rolling and rotary forging of metastable beta Ti-18Zr-14Nb (at. %) alloy for bone implants: microstructure, texture and functional properties. J Alloys Compd. 2019;800:320–326.
  • Najmon JC, Raeisi S, Tovar A. 2 - Review of additive manufacturing technologies and applications in the aerospace industry. In: Froes F, Boyer R, editors. Addit. Manuf. Aerosp. Ind. Elsevier; 2019. p. 7–31. DOI:https://doi.org/10.1016/B978-0-12-814062-8.00002-9.
  • Chen Q, Thouas GA. Metallic implant biomaterials. Mater Sci Eng R Rep. 2015. DOI:https://doi.org/10.1016/j.mser.2014.10.001
  • Cronskär M, Bäckström M, Rännar LE. Production of customized hip stem prostheses - A comparison between conventional machining and electron beam melting (EBM). Rapid Prototyp J. 2013;19:365–372.
  • Allen J. An investigation into the comparative costs of additive manufacture vs. machine from solid for aero engine parts. Cost Eff Manuf via Net-Shape Process. 2006.
  • Ren X, Shao H, Lin T, et al. 3D gel-printing-An additive manufacturing method for producing complex shape parts. Mater Des. 2016;101:80–87.
  • Li L, Post B, Kunc V, et al. Additive manufacturing of near-net-shape bonded magnets: prospects and challenges. Scr Mater. 2017. DOI:https://doi.org/10.1016/j.scriptamat.2016.12.035
  • Ngo TD, Kashani A, Imbalzano G, et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos Part B Eng. 2018;143:172–196.
  • Gao W, Zhang Y, Ramanujan D, et al. The status, challenges, and future of additive manufacturing in engineering. Comput Aided Des. 2015;69:65–89.
  • Mawale MB, Kuthe AM, Dahake SW. Additive layered manufacturing: state-of-the-art applications in product innovation. Concurr Eng Res Appl. 2016;24:94–102.
  • Mellor S, Hao L, Zhang D. Additive manufacturing: A framework for implementation. Int J Prod Econ. 2014;149:194–201.
  • Fahad M, Dickens P, Gilbert M. Novel polymeric support materials for jetting based additive manufacturing processes. Rapid Prototyp J. 2013;19:230–239.
  • Groth C, Kravitz ND, Jones PE, et al. Three-dimensional printing technology. J Clin Orthod. 2014, 48(8):475-85.
  • Gothait H Apparatus and method for three dimensional model printing. US Pat 6,259,962 2001. https://doi.org/10.1074/JBC.274.42.30033. 51.
  • https://make.3dexperience.3ds.com/processes/material-jetting Dec. 2019.
  • https://www.3dhubs.com/knowledge-base/introduction-material-jetting-3d-printing/ Dec. 2019.
  • Gaytan SM, Cadena MA, Karim H, et al. Fabrication of barium titanate by binder jetting additive manufacturing technology. Ceram Int. 2015;41:6610–6619.
  • Gibson I, Rosen D, Stucker B, et al. Binder jetting. Addit Manuf Technol. 2015. DOI:https://doi.org/10.1007/978-1-4939-2113-3_8.
  • https://all3dp.com/2/what-is-binder-jetting-3d-printing-simply-explained/ Dec. 2019.
  • https://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditivemanufacturing/materialextrusion/ion/Dec. 2019
  • https://engineeringproductdesign.com/knowledge-base/material-extrusion/ Dec. 2019.
  • Wolcott PJ, Dapino MJ. Ultrasonic additive manufacturing. Addit Manuf Handb Prod Dev Def Ind. 2017. DOI:https://doi.org/10.1201/9781315119106
  • https://engineeringproductdesign.com/knowledge-base/sheet-lamination/ Dec. 2019.
  • Gibson I., Rosen D., Stucker B. (2015) Directed Energy Deposition Processes. In: Additive Manufacturing Technologies. Springer, New York, NY.https://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditivemanufacturing/sheetlamination/.
  • Davoudinejad A, Diaz-Perez LC, Quagliotti D, et al. Additive manufacturing with vat polymerization method for precision polymer micro components production. Procedia CIRP. 2018;75:98–102.
  • ation/n.d. https://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditivemanufacturing/vatphotopolymerisation/.
  • Sun S, Brandt M, Easton M. Powder bed fusion processes: an overview. Laser Addit Manuf Mater Des Technol Appl. 2017. DOI:https://doi.org/10.1016/B978-0-08-100433-3.00002-6
  • Hacisalihoglu I, Samancioglu A, Yildiz F, et al. Tribocorrosion properties of different type titanium alloys in simulated body fluid. Wear. 2015;332-333:679–686.
  • Zhao L, Chu PK, Zhang Y, et al. Antibacterial coatings on titanium implants. J Biomed Mater Res - Part B Appl Biomater. 2009;91B:470–480.
  • Minagar S, Berndt CC, Wang J, et al. A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomater. 2012;8:2875–2888.
  • Kulkarni M, Mazare A, Schmuki P, et al. Biomaterial surface modification of titanium and titanium alloys for medical applications. Nanomedicine. 2014.
  • Manhabosco TM, Tamborim SM, Dos Santos CB, et al. Tribological, electrochemical and tribo-electrochemical characterization of bare and nitrided Ti6Al4V in simulated body fluid solution. Corros Sci. 2011;53:1786–1793.
  • Sathish S, Geetha M, Pandey ND, et al. Studies on the corrosion and wear behavior of the laser nitrided biomedical titanium and its alloys. Mater Sci Eng C. 2010;30:376–382.
  • Rautray TR, Narayanan R, Kwon TY, et al. Surface modification of titanium and titanium alloys by ion implantation. J Biomed Mater Res - Part B Appl Biomater. 2010;93B:581–591.
  • Díaz C, Lutz J, Mändl S, et al. Improved bio-tribology of biomedical alloys by ion implantation techniques. Nucl Instrum Methods Phys Res, Sect B. 2009;267:1630–1633.
  • Sundararajan T, Kamachi Mudali U, Nair KGM, et al. Electrochemical studies on nitrogen ion implanted Ti6Al4V alloy. Anti-Corrosion Methods Mater. 1998;45:162–166.
  • Thair L, Mudali UK, Bhuvaneswaran N, et al. Nitrogen ion implantation and in vitro corrosion behavior of as-cast Ti-6Al-7Nb alloy. Corros Sci. 2002;44:2439–2457.
  • Thair L, Mudali UK, Rajagopalan S, et al. Surface characterization of passive film formed on nitrogen ion implanted Ti-6Al-4V and Ti-6Al-7Nb alloys using SIMS. Corros Sci. 2003;45:1951–1967.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.