244
Views
10
CrossRef citations to date
0
Altmetric
Review Article

ATIG welding: a small step towards sustainable manufacturing

ORCID Icon &

References

  • Garetti M, Taisch M. Sustainable manufacturing: trends and research challenges. Prod Plan Control. 2012 Feb;23(2–3):83–104.
  • Nobrega JHC, Pio PGC, Fernandes GL, et al. Sustainability in manufacturing processes: practices performed in metal forming, casting, heat treatment, welding and electrostatic painting. Int J Sustain Dev World Ecol. 2019 Nov;26(8):684–697.
  • Mevada D, Panchal H, ElDinBastawissi HA, et al. Applications of evacuated tubes collector to harness the solar energy: a review. Int J Ambient Energy. 2019 Jun 1–18. DOI:10.1080/01430750.2019.1636886
  • Ismail TNHT, Don RAM, Diman SF, et al. Innovative green technology and products meeting geo-environmental challenges. Procedia Eng. 2013;53:104–115.
  • Tathgir S, Bhattacharya A. Activated-TIG welding of different steels: influence of various flux and shielding gas. Mater Manuf Process. 2016 Feb;31(3):335–342.
  • Malek J, Desai TN. A systematic literature review to map literature focus of sustainable manufacturing. J Clean Prod. 2020May;256:120345.
  • Mehta KP. Sustainability in welding and processing. In: Gupta K, editor. Innovations in manufacturing for sustainability. Cham: Springer International Publishing; 2019. p. 125–145.
  • Magudeeswaran G, Nair SR, Sundar L, et al. Optimization of process parameters of the activated tungsten inert gas welding for aspect ratio of UNS S32205 duplex stainless steel welds. Def Technol. 2014 Sep;10(3):251–260.
  • Modenesi PJ, ApolinaÂrio ER, Pereira IM. TIG welding with single-component Fluxes.  J Mater Process Technol. 2000;99:260-265.
  • Lin H-L, Wu T-M. Effects of activating flux on weld bead geometry of inconel 718 alloy TIG welds. Mater Manuf Process. 2012 Dec;27(12):1457–1461.
  • Vora JJ, Badheka VJ. Experimental investigation on mechanism and weld morphology of activated TIG welded bead-on-plate weldments of reduced activation ferritic/martensitic steel using oxide fluxes. J Manuf Process. 2015Oct;20:224–233.
  • Vora JJ. Experimental investigation on mechanism and weld morphology of activated TIG welded bead-on-plate weldments of reduced activation ferritic/martensitic steel using oxide fluxes. J Manuf Process. 2015Oct;20:224–233.
  • Kumar SA, Sathiya P. Experimental investigation of the A-TIG welding process of incoloy 800H. Mater Manuf Process. 2015 Sep;30(9):1154–1159.
  • Shrivastava A, Krones M, Pfefferkorn FE. Comparison of energy consumption and environmental impact of friction stir welding and gas metal arc welding for aluminum. CIRP J Manuf Sci Technol. 2015May;9:159–168.
  • J. S and C. P. Flux bounded tungsten inert gas welding for enhanced weld performance—A review. J Manuf Process. 2017;28:116–130. Aug.
  • Santhana Babu AV, Giridharan PK, Ramesh Narayanan P, et al. Microstructural Investigations on ATIG and FBTIG welding of AA 2219 T87 aluminum alloy. Appl Mech Mater. 2014Jul;592–594:489–493.
  • Vora JJ, Abhishek K, Srinivasan S. Attaining optimized A-TIG welding parameters for carbon steels by advanced parameter-less optimization techniques: with experimental validation. J Braz Soc Mech Sci Eng. 2019 Jun;41(6):261.
  • Jamal J, Darras B, Kishawy H. A study on sustainability assessment of welding processes. Proc Inst Mech Eng Part B J Eng Manuf. 2020 Feb;234(3):501–512.
  • Butola R, Tyagi M, Kumar J. Metallurgical Investigation of Synergic MIG welding of 304L stainless steel. Int J Adv Res Innov. 2016;4(3):518–523.
  • Butola R, Meena SL, Kumar J, et al. Effect of welding parameter on micro hardness of synergic mig welding of 304l austenitic stainless steel. International Journal ofMechanical Engineering & Technology, Volume 4(3):337-343.
  • Balos S, Dramicanin M, Janjatovic P, et al. Metal oxide nanoparticle-based coating as a catalyzer for A-TIG welding: critical raw material perspective. Metals. 2019 May;9(5):567.
  • Vora JJ, Badheka VJ. Experimental investigation on microstructure and mechanical properties of activated TIG welded reduced activation ferritic/martensitic steel joints. J Manuf Process. 2017Jan;25:85–93.
  • Thomson J. On certain curious motions at the surfaces of wine and otheralcoholic liquors. Philos Mag. 1855; 10330–3.pdf. doi:10.1080/14786445508641982.
  • Leconte S, Paillard P, Chapelle P, et al. Effect of oxide fluxes on activation mechanisms of tungsten inert gas process. Sci Technol Weld Join. 2006 Jul;11(4):389–397.
  • Mills KC, Keene BJ, Brooks RF, et al. Marangoni Effects in Welding. Philos Trans Math Phys Eng Sci. 1998;356(1739):911–925. [Online]: http://www.jstor.org/stable/54903
  • Holtzer M, Retel K. Effect of temperature and sulphur content on the surface tension of Fe - C (3.9%) - Si (1.6%) alloy. Can Metall Q. 2000 Jan;39(3):339–344.
  • Lee J, Morita K. Effect of carbon and sulphur on the surface tension of molten iron. Steel Res. 2002 Sep;73(9):367–372.
  • Keene BJ. Review of data for the surface tension of pure metals. Int Mater Rev. 1993;3:36.
  • Zhao Y, Zhou H, Shi Y. The study of surface active element on weld pool development in A-TIG welding. Model Simul Mater Sci Eng. 2006 Apr;14(3):331–349.
  • Li D, Lu S, Dong W, et al. Study of the law between the weld pool shape variations with the welding parameters under two TIG processes. J Mater Process Technol. 2012 Jan;212(1):128–136.
  • Tanaka M, Shimizu T, Terasaki T, et al. Effects of activating flux on arc phenomena in gas tungsten arc welding. Sci Technol Weld Join. 2000 Dec;5(6):397–402.
  • Tseng K-H, Chen K-L. Comparisons between TiO 2 - and SiO 2 -flux assisted TIG welding processes. J Nanosci Nanotechnol. 2012 Aug;12(8):6359–6367.
  • Lowke JJ, Tanaka M, Ushio M. Mechanisms giving increased weld depth due to a flux. J Phys Appl Phys. 2005 Sep;38(18):3438–3445.
  • Shah B, Madhvani B. A review paper on A-TIG welding process. International Journal of Science Technology & Engineering; 3(9):4.
  • Berthier A, Paillard P, Carin M, et al. TIG and A-TIG welding experimental investigations and comparison with simulation: part 2 – arc constriction and arc temperature. Sci Technol Weld Join. 2012 Nov;17(8):616–621.
  • Venkatesan G, George J, Sowmyasri M, et al. Effect of Ternary Fluxes on Depth of Penetration in A-TIG Welding of AISI 409 Ferritic Stainless Steel. Procedia Mater Sci. 2402–2410, 2014;5. DOI:10.1016/j.mspro.2014.07.485.
  • Berthier A, Paillard P, Carin M, et al. TIG and A-TIG welding experimental investigations and comparison to simulation: part 1: identification of Marangoni effect. Sci Technol Weld Join. 2012 Nov;17(8):609–615.
  • Zhang R-H, Pan J-L, Katayama S. The mechanism of penetration increase in A-TIG welding. Front Mater Sci. 2011 Jun;5(2):109–118.
  • Tseng K-H. Development and application of oxide-based flux powder for tungsten inert gas welding of austenitic stainless steels. Powder Technol. 2013Jan;233:72–79.
  • Korra NN, Vasudevan M, Balasubramanian KR. Multi-objective optimization of activated tungsten inert gas welding of duplex stainless steel using response surface methodology. Int J Adv Manuf Technol. 2015 Mar;77(1–4):67–81.
  • Jayakrishnan S, Chakravarthy P, Muhammed Rijas A. Effect of flux gap and particle size on the depth of penetration in FBTIG welding of aluminium. Trans Indian Inst Met. 2017 Jul;70(5):1329–1335.
  • Tseng K-H, Lin P-Y. UNS S31603 stainless steel tungsten inert gas welds made with microparticle and nanoparticle oxides. Materials. 2014 Jun;7(6):4755–4772.
  • Patel D, Soman SN. Develop a flux cored wire for submerged arc welding of Ni-Mo low alloy steel. Sādhanā. 2020 Dec;45(1):127.
  • Roy S, Samaddar S, Md. Nasim Uddin A, et al. Effect of activating flux on penetration in ATIG welding of 316 stainless steel. Indian Weld J. 2017 Oct;50(4):72.
  • Vasudevan M. Effect of A-TIG welding process on the weld attributes of type 304LN and 316LN stainless steels. J Mater Eng Perform. 2017 Mar;26(3):1325–1336.
  • Chandrasekhar N, Vasudevan M. Intelligent modeling for optimization of A-TIG welding process. Mater Manuf Process. 2010 Dec;25(11):1341–1350.
  • Lin H-L. Optimization of Inconel 718 alloy welds in an activated GTA welding via Taguchi method, gray relational analysis, and a neural network. Int J Adv Manuf Technol. 2013 Jul;67(1–4):939–950.
  • Tseng K-H, Hsu C-Y. Performance of activated TIG process in austenitic stainless steel welds. J Mater Process Technol. 2011 Mar;211(3):503–512.
  • Kumar H, Ahmad GN, Singh NK. Activated flux TIG welding of Inconel 718 super alloy in presence of tri-component flux. Mater Manuf Process. 2019 Jan;34(2):216–223.
  • Fujii H, Sato T, Lu S, et al. Development of an advanced A-TIG (AA-TIG) welding method by control of Marangoni convection. Mater Sci Eng A. 2008 Nov;495(1–2):296–303.
  • Feng C, Qin G, Meng X, et al. Defect evolution of 409L stainless steel in high-speed TIG welding. Mater Manuf Process. 2020 Jan;35(2):179–186.
  • Mills KC, Keene BJ. Factors affecting variable weld penetration. Int Mater Rev. 1990 Jan;35(1):185–216.
  • Huang H-Y. Argon-hydrogen shielding gas mixtures for activating flux-assisted gas tungsten arc welding. Metall Mater Trans A. 2010 Nov;41(11):2829–2835.
  • Tathgir S, Rathod DW, Batish A. Process enhancement using hydrogen-induced shielding: H 2 -induced A-TIG welding process. Mater Manuf Process. 2020 Jun;1–12. DOI:10.1080/10426914.2020.1765251
  • Yang C, Sanbo L, Fengyao L, et al. Reseach on the mechanism of penetration increase by flux  in A-TIG welding. J.Mater.Sci.TEchnol. 2003; 19(1):225-227.
  • Fengyao L, Yang C. Effect of weld microstructure on weld properties in A-TIG welding of Titanium alloy. Trans Nonferrous Met Soc. 2003 Aug;13(4):876–880.
  • Zuber M, Chaudhri V, Suri VK, et al. Effect of Flux Coated Gas Tungsten Arc Welding on 304L. Int J Eng Technol. 2014;6(3):177–181.
  • Nayee SG, Badheka VJ. Effect of oxide-based fluxes on mechanical and metallurgical properties of Dissimilar Activating Flux Assisted-Tungsten Inert Gas Welds. J Manuf Process. 2014 Jan;16(1):137–143.
  • Li Q, Wang X, Zou Z, et al. Effect of activating flux on arc shape and arc voltage in tungsten inert gas welding. Trans Nonferrous Met Soc China. 2007 Jun;17(3):486–490.
  • Tseng K-H, Hsu C-Y. Performance of activated TIG process in austenitic stainless steel welds. J Mater Process Technol. 2011 Mar;211(3):503–512.
  • Lu S, Fujii H, Sugiyama H, et al. Weld penetration and marangoni convection with oxide fluxes in GTA welding. Mater Trans. 2002;43(11):2926–2931.
  • Dhandha KH, Badheka VJ. Effect of activating fluxes on weld bead morphology of P91 steel bead-on-plate welds by flux assisted tungsten inert gas welding process. J Manuf Process. 2015Jan;17:48–57.
  • Marya M, Edwards GR. Chloride contributions in flux-assisted GTA welding of magnesium alloys. p. 8.
  • Patel NP, Badheka VJ, Vora JJ, et al. Effect of oxide fluxes in activated TIG welding of stainless steel 316LN to low activation Ferritic/Martensitic steel (LAFM) dissimilar combination. Trans. Indian Inst. Met. 2019Jun;72:2753–2761.
  • Meena SL, Butola R, Murtaza Q, et al. Metallurgical Investigations of Microstructure and Micro hardness across the various zones in Synergic MIG Welding of Stainless steel. Mater Today Proc. 2017;4(8):8240–8249.
  • Sawickij MM, Mielniczuk GM, Lupan AF, et al. Activating fluxes in inert gas‐shield welding of steels. Weld Int. 2001 Jan;15(9):677–683.
  • Huang HY, Shyu SW, Tseng KH, et al. Evaluation of TIG flux welding on the characteristics of stainless steel. Sci Technol Weld Join. 2005 Sep;10(5):566–573.
  • Xie X, Shen J, Cheng L, et al. Effects of nano-particles strengthening activating flux on the microstructures and mechanical properties of TIG welded AZ31 magnesium alloy joints. Mater Des. 2015Sep;81:31–38.
  • Shen J, Liu K, Li Y, et al. Effects of fluxes on distribution of SiC particles and microstructures and mechanical properties of nanoparticles strengthening A-TIG (NSA-TIG) welded magnesium alloy joints. Sci Technol Weld Join. 2013 Jul;18(5):404–413.
  • Vasudevan M, Prof. Placid Rodriquez Memorial Lecture. p. 13.
  • Kulkarni A, Dwivedi DK, Vasudevan M. Study of mechanism, microstructure and mechanical properties of activated flux TIG welded P91 Steel-P22 steel dissimilar metal joint. Mater Sci Eng A. 2018Jul;731:309–323.
  • Arunkumar V, Vasudevan M, Maduraimuthu V, et al. Effect of activated flux on the microstructure and mechanical properties of 9Cr-1Mo steel weld joint. Mater Manuf Process. 2012 Nov;27(11):1171–1177.
  • Chandrasekar G, Kailasanathan C, Verma DK, et al. Optimization of welding parameters, influence of activating flux and investigation on the mechanical and metallurgical properties of activated TIG weldments of AISI 316 L stainless steel. Trans Indian Inst Met. 2017 Apr;70(3):671–684.
  • Bonnfois B, Coudreue L, Charles J, A-TIG welding of high nitrogen alloyed stainless steels: a metallurgically high-performance welding process. p. 5.
  • Niagaj J, The use of activating fluxes for the welding of high-alloy steels by A-TIG method. p. 5.
  • Nayee SG, Badheka VJ. Effect of oxide-based fluxes on mechanical and metallurgical properties of dissimilar activating flux assisted-tungsten inert gas welds. J Manuf Process. 2014 Jan;16(1):137–143.
  • Chern T-S, Tseng K-H, Tsai H-L. Study of the characteristics of duplex stainless steel activated tungsten inert gas welds. Mater Des. 2011 Jan;32(1):255–263.
  • Huang H-Y. Effects of shielding gas composition and activating flux on GTAW weldments. Mater Des. 2009 Aug;30(7):2404–2409.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.