146
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Constitutive analysis of hot forming process of P91 steel: finite element method approach

ORCID Icon, , , , ORCID Icon, & ORCID Icon show all
Pages 1182-1193 | Received 02 May 2021, Accepted 31 May 2021, Published online: 15 Jun 2021

References

  • Chen Z, Zhang Y, Ren Y, et al. Flow behavior modeling and processing maps for P91 steel during hot deformation. Indian J. Eng. Mater. Sci. 2019;26(2):105–111.
  • Samantaray D, Phaniraj C, Mandal S, et al. Strain dependent rate equation to predict elevated temperature flow behavior of modified 9Cr-1Mo (P91) steel. Mater Sci Eng A. 2011;528(3):1071–1077.
  • Samantaray D, Mandal S, Bhaduri AK. Constitutive analysis to predict high-temperature flow stress in modified 9Cr–1Mo (P91) steel. Mater. Des. 2010;31(2):981–984.
  • Samantaray D, Mandal S, Bhaduri AK. Optimization of hot working parameters for thermo-mechanical processing of modified 9Cr–1Mo (P91) steel employing dynamic materials model. Mater Sci Eng A. 2011;528(15):5204–5211.
  • Shrestha T, Basirat M, Charit I, et al. Creep deformation mechanisms in modified 9Cr–1Mo steel. J. Nucl. Mater. 2012;423(1–3):110–119.
  • Ohgami M, Naoi H, Kinbara S, et al., “Development of 9CrW tube, pipe and forging for ultra supercritical power plant boilers,” Nippon Steel Technical Report, no. 72. pp. 59–64, 1997.
  • George D. Mechanical metallurgy. New York: Mcgraw-Hill Book Company; 1988.
  • Prasad YVRK, Gegel HL, Doraivelu SM, et al. Modeling of dynamic material behavior in hot deformation: forging of Ti-6242. Metall Trans A. 1984;15(10):1883–1892.
  • Narayana Murty SVS, Nageswara Rao B, Kashyap BP. Instability criteria for hot deformation of materials. Int Mater Rev. 2000;45(1):15–26.
  • Obiko J, Chown LH, Whitefield DJ. Warm deformation behaviour of P92 steel. Mater Res Express. 2019;6(12). DOI:10.1088/2053-1591/ab5e9c
  • Xiao ZB, Huang YC, Liu Y. Modeling of flow stress of 2026 Al Alloy under hot compression. Adv Mater Sci Eng. 2016;2016:28–32.
  • Wan Z, Hu L, Sun Y, et al. Hot deformation behavior and processing workability of a Ni-based alloy. J Alloys Compd. 2018;769:367–375.
  • Wang Z, Fu W, Wang B, et al. Study on hot deformation characteristics of 12%Cr ultra-super-critical rotor steel using processing maps and Zener–Hollomon parameter. Mater. Charact. 2010;61(1):25–30.
  • Li Y, Ji H, Li W, et al. Hot deformation characteristics—constitutive equation and processing maps—of 21-4N heat-resistant steel. Materials. 2018;12(1):89.
  • Wei Z, Yandong Y. High-temperature rheological behavior and numerical simulation technology for 6061 aluminum alloy connecting rods. J. Eng. Sci. Technol. Rev. 2018;11(6):116–124.
  • Xia Y, Zhang C, Zhang L, et al. A comparative study of constitutive models for flow stress behavior of medium carbon Cr – Ni – Mo alloyed steel at elevated temperature. Journal of Materials Research. 2017;3875–3884. DOI:10.1557/jmr.2017.356.
  • Ohdar RK, Equbal A, Equbal MI. Hot deformation studies of AISI 1035 steel using thermo mechanical simulator. Mater Today Proc. 2020;26:3305–3310.
  • Ketabchi M, Mohammadi H, Izadi M. Finite-element simulation and experimental investigation of isothermal backward extrusion of 7075 Al Alloy. Arab J Sci Eng. 2012;37(8):2287–2296.
  • Oh SI, Wu WT, Tang JP, et al. Capabilities and applications of FEM code deform: the perspective of the developer. J Mater Process Tech. 1991;27(1–3):25–42.
  • Fedoriková A, Kvačkaj T, Kočiško R, et al. Hot compression test of 9 Cr-1 mo steel – numerical simulation. 2016;22(2):102–110. Acta Metall. Slovaca.
  • Obiko JO, Mwema FM, Bodunrin MO. Finite element simulation of X20CrMoV121 steel billet forging process using the Deform 3D software. SN Appl. Sci. 2019;1(9):1–10.
  • Obiko JO, Mwema FM, Akinlabi ET. Strain rate-strain/stress relationship during isothermal forging: a Deform-3D FEM. Eng. Solid Mech. 2019;8:1–6.
  • Kukuryk M. Numerical analysis of strains and stresses in the hot cogging process. J. Appl. Math. Comput. Mech. 2018;17(3):45–52.
  • Kukuryk M. Analysis of deformation and damage evolution in hot elongation forging. Arch Metall Mater. 2012;57(2):417–424.
  • Evans RW, Scharning PJ. Axisymmetric compression test and hot working properties of alloys. Mater Sci Technol. 2001;17(8):995–1004.
  • Rasti J, Najafizadeh A, Meratian M. Correcting the stress-strain curve in hot compression test using finite element analysis and Taguchi method. Int. J. ISSI. 2011;8(1):26–33. [Online]. Available: http://journal.issiran.com/article_6374_44b99e06e066fa7ee24705f05935b39d.pdf
  • Zhu L, He J, Zhang Y. A two-stage constitutive model of X12CrMoWVNbN10-1-1 steel during elevated temperature. Mater Res Express. 2018;5(2):1–11.
  • Laasraoui A, Jonas JJ. Prediction of steel flow stresses at high temperatures and strain rates. Metall Trans A. 1991;22(7):1545–1558.
  • Sellars CM, McTegart WJ. On the mechanism of hot deformation. Acta Metall. 1966;14(9):1136–1138.
  • McQueen HJ, Ryan ND. Constitutive analysis in hot working. Mater Sci Eng A. 2002;322(1–2):43–63.
  • Oudin A, Barnett MR, Hodgson PD. Grain size effect on the warm deformation behaviour of a Ti-IF steel. Mater Sci Eng A. 2004;367(1–2):282–294.
  • Cabrera JM, Al Omar A, Prado JM, et al. Modeling the flow behavior of a medium carbon microalloyed steel under hot working conditions. Metall Mater Trans A. 1997;28(11):2233–2244.
  • Carsí M, Peñalba F, Rieiro I, et al. High temperature workability behaviour of a modified P92 steel. Int. J. Mater. Res. 2011;102(11):1378–1383.
  • Yang ZN, Dai LQ, Chu CH, et al. Effect of aluminum alloying on the hot deformation behavior of nano-bainite bearing steel. J Mater Eng Perform. 2017;26(12):5954–5962.
  • Menapace C, Sartori N, Pellizzari M, et al. Hot deformation behavior of four steels: a comparative study. J Eng Mater Technol. 2018;140(2):021006.
  • Yang Z, Zhang F, Zheng C, et al. Study on hot deformation behaviour and processing maps of low carbon bainitic steel. Mater Des. 2015;66(PA):258–266.
  • Qian LY, Fang G, Zeng P, et al. Correction of flow stress and determination of constitutive constants for hot working of API X100 pipeline steel. Int. J. Press. Vessel. Pip. 2015;132-133(November):43–51.
  • Kishor B, Chaudhari GP, Nath SK. Hot deformation characteristics of 13Cr-4Ni stainless steel using constitutive equation and processing map. J Mater Eng Perform. 2016;25(7):2651–2660.
  • Mirzadeh H. A simplified approach for developing constitutive equations for modeling and prediction of hot deformation flow stress. Metall Mater Trans A. 2015;46(9):4027–4037.
  • He A, Xie G, Zhang H, et al. A comparative study on Johnson–Cook, modified Johnson–Cook and Arrhenius-type constitutive models to predict the high temperature flow stress in 20CrMo alloy steel. Mater. Des. 2013;52:677–685.
  • He A, Xie G, Yang X, et al. A physically-based constitutive model for a nitrogen alloyed ultralow carbon stainless steel. Comput Mater Sci. 2015;98:64–69.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.