390
Views
8
CrossRef citations to date
0
Altmetric
Review Article

Effect of nano-fillers on low-velocity impact properties of synthetic and natural fibre reinforced polymer composites- a review

ORCID Icon, ORCID Icon &
Pages 2963-2986 | Accepted 15 Jun 2021, Published online: 28 Jun 2021

References

  • Anandhan S, Bandyopadhyay S. Polymer nano-composites: from synthesis to applications. In: Nano-composites and polymers with analytical methods. InTech; 2011;pp 1-28.
  • Billady RK, Mudradi S (2020, May). Influence of filler incorporation on the mechanical and wear behaviour of synthetic fiber reinforced polymer matrix composites-A review. In AIP Conference Proceedings (Vol. 2236, No. 1, p. 40001). Karnataka,  India: AIP Publishing LLC.
  • Nayak RK. Influence of seawater aging on mechanical properties of nano-Al2O3 embedded glass fiber reinforced polymer nanocomposites. Constr Build Mater. 2019;221:12–19.
  • Cantwell WJ, Morton J. The significance of damage and defects and their detection in composite materials: a review. J Strain Anal Eng Des. 1992;27(1):29–42.
  • Kellas S (1988). Environmental effects on fatigue damage in notched carbon fiber composites (Doctoral dissertation).
  • Dorey G. Fracture of composites and damage tolerance. Agard LS124; 1982.Considerations of Design, Fabric. and Tests for Composite Mater.
  • Kretsis G. 1987. Mechanical characterisation of hybrid glass/carbon fiber-reinforced plastics (Doctoral dissertation, Imperial College London (University of London)).
  • Ghelli D, Minak G. Low velocity impact and compression after impact tests on thin carbon/epoxy laminates. Compos Part B Eng. 2011;42(7):2067–2079.
  • Shi Y, Swait T, Soutis C. Modelling damage evolution in composite laminates subjected to low velocity impact. Compos Struct. 2012;94(9):2902–2913.
  • Wang Y, Zhang J, Fang G, et al. Influence of temperature on the impact behavior of woven-ply carbon fiber reinforced thermoplastic composites. Compos Struct. 2018;185:435–445.
  • Menna C, Asprone D, Caprino G, et al. Numerical simulation of impact tests on GFRP composite laminates. Int J Impact Eng. 2011;38(8–9):677–685.
  • Evci C, Gülgeç M. An experimental investigation on the impact response of composite materials. Int J Impact Eng. 2012;43:40–51.
  • Icten BM, Kıral BG, Deniz ME. Impactor diameter effect on low velocity impact response of woven glass epoxy composite plates. Compos Part B Eng. 2013;50:325–332.
  • Hassan MA, Naderi S, Bushroa AR. Low-velocity impact damage of woven fabric composites: finite element simulation and experimental verification. Mater Des. 2014;53:706–718.
  • Aktas M, Karakuzu R, Icten BM. Impact behavior of glass/epoxy laminated composite plates at high temperatures. J Compos Mater. 2010;44(19):2289–2299.
  • Atas C, Sayman O. An overall view on impact response of woven fabric composite plates. Compos Struct. 2008;82(3):336–345.
  • Gillespie JW Jr, Monib AM, Carlsson LA. Damage tolerance of thick-section S-2 glass fabric composites subjected to ballistic impact loading. J Compos Mater. 2003;37(23):2131–2147.
  • Hosur MV, Karim MR, Jeelani S. Studies on stitched woven S2 glass/epoxy laminates under low velocity and ballistic impact loading. J Reinf Plast Compos. 2004;23(12):1313–1323.
  • Silva MA, Cismaşiu C, Chiorean CG. Numerical simulation of ballistic impact on composite laminates. Int J Impact Eng. 2005;31(3):289–306.
  • Baucom JN, Zikry MA, Rajendran AM. Low-velocity impact damage accumulation in woven S2-glass composite systems. Compos Sci Technol. 2006;66(10):1229–1238.
  • Petrucci R, Santulli C, Puglia D, et al. Impact and post-impact damage characterisation of hybrid composite laminates based on basalt fibers in combination with flax, hemp and glass fibers manufactured by vacuum infusion. Compos Part B Eng. 2015;69:507–515.
  • Sarasini F, Tirillò J, Ferrante L, et al. Drop-weight impact behaviour of woven hybrid basalt–carbon/epoxy composites. Compos Part B Eng. 2014;59:204–220.
  • Bandaru AK, Patel S, Sachan Y, et al. Low velocity impact response of 3D angle-interlock Kevlar/basalt reinforced polypropylene composites. Mater Des. 2016;105:323–332.
  • Bhanupratap R. Impact damage resistance of Jute/Kevlar hybrid composite laminates subjected to varying heights: an experimental approach. Mater Today Proc. 2020;1396-1401.
  • Ismail MF, Sultan MT, Hamdan A, et al. Low velocity impact behaviour and post-impact characteristics of kenaf/glass hybrid composites with various weight ratios. J Mater Res Technol. 2019;8(3):2662–2673.
  • Vasudevan A, Senthil Kumaran S, Naresh K, et al. Layer-wise damage prediction in carbon/Kevlar/S-glass/E-glass fibre reinforced epoxy hybrid composites under low-velocity impact loading using advanced 3D computed tomography. Int J Crashworthiness. 2020;25(1):9–23.
  • Kalantari M, Dong C, Davies IJ. Multi-objective robust optimisation of unidirectional carbon/glass fibre reinforced hybrid composites under flexural loading. Compos Struct. 2016;138:264–275.
  • Ozben T. Impact behavior of hybrid composite plates dependent on curing and different stacking sequences. Mater Testing. 2016;58(5):442–447.
  • Yan R, Wang R, Lou C-W, et al. Low-velocity impact and static behaviors of high resilience thermal-bonding inter/intra-ply hybrid composites. Compos Part B Eng. 2015;69:58–68.
  • Ashraf W, Nawab Y, Umair M, et al. Investigation of mechanical behavior of woven/knitted hybrid composites. J Tex Inst. 2017;108(9):1510–1517.
  • Sismanoglu S, Gungor A, Aslan B, et al. The synthesis and mechanical characterisation of laminated hybrid-epoxy matrix composites. International Journal of Mining, Reclamation and Environment. 2017;31(6):382–388.
  • Bandaru AK, Vetiyatil L, Ahmad S. The effect of hybridization on the ballistic impact behavior of hybrid composite armors. Compos Part B Eng. 2015;76:300–319.
  • Bulut M, Erkliğ A, Yeter E. Hybridization effects on quasi-static penetration resistance in fiber reinforced hybrid composite laminates. Compos Part B Eng. 2016;98:9–22.
  • Bhudolia SK, Kam KKC, Joshi SC. Mechanical and vibration response of insulated hybrid composites. J Ind Text. 2017;47(08);1528083717714481.
  • Subadra SP, Griškevičius P, Yousef S. Low velocity impact and pseudo-ductile behaviour of carbon/glass/epoxy and carbon/glass/PMMA hybrid composite laminates for aircraft application at service temperature. Polym Test. 2020;89:106711.
  • Jesthi DK, Nayak A, Routara BC, et al. Evaluation of mechanical and tribological properties of glass/carbon fiber reinforced polymer hybrid composite. Int J Eng. 2018;31(7):1088–1094.
  • Jesthi DK, Nayak RK. Evaluation of mechanical properties and morphology of seawater aged carbon and glass fiber reinforced polymer hybrid composites. Compos Part B Eng. 2019;174:106980.
  • Lalande L, Plummer CJ, Månson JAE, et al. Microdeformation mechanisms in rubber toughened PMMA and PMMA-based copolymers. Eng Fract Mech. 2006;73(16):2413–2426.
  • Sasidharan S, Anand A. Epoxy-Based Hybrid Structural Composites with Nanofillers: a Review. Ind Eng Chem Res. 2020;59(28):12617–12631.
  • Safri SNA, Sultan MTH, Jawaid M, et al. Impact behaviour of hybrid composites for structural applications: a review. Compos Part B Eng. 2018;133:112–121.
  • Razali N, Sultan MTH, Jawaid M Impact damage analysis of hybrid composite materials. In: Durability and life prediction in biocomposites, Fibre-Reinforced composites and hybrid composites. Elsevier: Woodhead Publishing; 2019. p. 121–132.
  • Chaurasia A, Mulik RS, Parashar A. Polymer-based nanocomposites for impact loading: a review. Mech Adv MaterStruct. 2021;1–26. DOI:10.1080/15376494.2021.1871688
  • Hussain, F., Hojjati, M., Okamoto, M. and Gorga, R.E., 2006. Polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. Journal of composite materials, 40(17), pp.1511-1575.
  • Giannelis EP. Polymer layered silicate nano-composites. Adv Mater. 1996;8(1):29–35.
  • ŽUKAS T, JANKAUSKAITĖ V, ŽUKIENĖ K, et al. Low-velocity impact behaviour of carbon fiber reinforced Methyl Methacrylate Nano-composites. Materials science (Medziagotyra). 2015;21:232–237.
  • Nayak RK, Rathore D, Routara BC, et al. Effect of nano Al 2 O 3 fillers and crosshead velocity on interlaminar shear strength of glass fiber reinforced polymer composite. International Journal of Plastics Technology. 2016;20(2):334–344.
  • Nayak RK. Effect of nano-TiO 2 particles on mechanical properties of hydrothermal aged glass fiber reinforced polymer composites. In: Advanced research in nanosciences for water technology. Cham: Springer; 2019. p. 69–93.
  • Nayak S, Nayak RK, Panigrahi I, et al. Tribo-Mechanical responses of glass fiber reinforced polymer hybrid nanocomposites. Mater Today Proc. 2019;18:4042–4047.
  • Reynaud E, Gauthier C, Perez J. Nanophases in polymers. Revue de Metallurgie. 1999;96(2):169–176.
  • Singh NB, Rai S, Agarwal S. Polymer nanocomposites and Cr (VI) removal from water. Nanosci Technol. 2014;1(1):10.
  • Li W, Dichiara A, Zha J, et al. On improvement of mechanical and thermo-mechanical properties of glass fabric/epoxy composites by incorporating CNT–Al2O3 hybrids. Compos Sci Technol. 2014;103:36–43.
  • Chatterjee A, Islam MS. Fabrication and characterization of TiO2–epoxy nano-composite. Mater Sci Eng A. 2008;487(1–2):574–585.
  • Kumar K, Ghosh PK, Kumar A. Improving mechanical and thermal properties of TiO2-epoxy nano-composite. Compos Part B Eng. 2016;97:353–360.
  • Thostenson ET, Ren Z, Chou TW. Advances in the science and technology of carbon nano-tubes and their composites: a review. Compos Sci Technol. 2001;61(13):1899–1912.
  • Baur J, Silverman E. Challenges and opportunities in multifunctional nano-composite structures for aerospace applications. MRS Bull. 2007;32(4):328–334.
  • Yu MF, Lourie O, Dyer MJ, et al. Strength and breaking mechanism of multi-walled carbon nano-tubes under tensile load. Science. 2000;287(5453):637–640.
  • Wong EW, Sheehan PE, Lieber CM. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nano-tubes. science. 1997;277(5334):1971–1975.
  • Kara M, Kirici M, Tatar AC, et al. Impact behavior of carbon fiber/epoxy composite tubes reinforced with multi-walled carbon nano-tubes at cryogenic environment. Compos Part B Eng. 2018;145:145–154.
  • Tehrani M, Boroujeni AY, Hartman TB, et al. Mechanical characterization and impact damage assessment of a woven carbon fiber reinforced carbon nano-tube–epoxy composite. Compos Sci Technol. 2013;75:42–48.
  • Rawat P, Singh KK. Damage tolerance of carbon fiber woven composite doped with MWCNTs under low-velocity impact. Procedia Eng. 2017;173:440–446.
  • Sun L, Gibson RF, Gordaninejad F, et al. Energy absorption capability of nano-composites: a review. Compos Sci Technol. 2009;69(14):2392–2409.
  • Feli S, Karami L, Jafari SS. Analytical modeling of low velocity impact on carbon nanotube-reinforced composite (CNTRC) plates. Mech Adv MaterStruct. 2019;26(5):394–406.
  • Kim JK, Mackay DB, Mai YW. Drop-weight impact damage tolerance of CFRP with rubber-modified epoxy matrix. Composites. 1993;24(6):485–494.
  • Bhuiyan MA, Hosur MV, Jeelani S. Low-velocity impact response of sandwich composites with nanophased foam core and biaxial (±45°) braided face sheets. Compos Part B Eng. 2009;40(6):561–571.
  • Schadler LS, Giannaris SA, Ajayan PM. Load transfer in carbon nano-tube epoxy composites. Appl Phys Lett. 1998;73(26):3842–3844.
  • Nor AFM, Sultan MTH, Jawaid M, et al. Analysing impact properties of CNT filled bamboo/glass hybrid nano-composites through drop-weight impact testing, UWPI and compression-after-impact behaviour. Compos Part B Eng. 2019;168:166–174.
  • Soliman EM, Sheyka MP, Taha MR. Low-velocity impact of thin woven carbon fabric composites incorporating multi-walled carbon nano-tubes. Int J Impact Eng. 2012;47:39–47.
  • Kostopoulos V, Baltopoulos A, Karapappas P, et al. Impact and after-impact properties of carbon fiber reinforced composites enhanced with multi-wall carbon nano-tubes. Compos Sci Technol. 2010;70(4):553–563.
  • El Moumen A, Tarfaoui M, Lafdi K, et al. Dynamic properties of carbon nano-tubes reinforced carbon fibers/epoxy textile composites under low velocity impact. Compos Part B Eng. 2017;125:1–8.
  • Rahman M, Hosur M, Zainuddin S, et al. Effects of amino-functionalized MWCNTs on ballistic impact performance of E-glass/epoxy composites using a spherical projectile. Int J Impact Eng. 2013;57:108–118.
  • Rahman MM, Zainuddin S, Hosur MV, et al. Improvements in mechanical and thermo-mechanical properties of e-glass/epoxy composites using amino-functionalized MWCNTs. Compos Struct. 2012;94(8):2397–2406.
  • Sadykov D, Nouicer L, Lekakou C. Hybrid woven glass fiber fabric-Multi-Walled carbon nanotube-Epoxy composites under low rate impact. J Composites Sci. 2017;1(1):10.
  • Ranjbar M, Feli S. Mechanical and low-velocity impact properties of epoxy-composite beams reinforced by MWCNTs. J Compos Mater. 2019;53(5):693–705.
  • Taraghi I, Fereidoon A, Taheri-Behrooz F. Low-velocity impact response of woven Kevlar/epoxy laminated composites reinforced with multi-walled carbon nano-tubes at ambient and low temperatures. Mater Des. 2014;53:152–158.
  • Ismail KI, Sultan MTH, Shah AUM, et al. Low velocity impact and compression after impact properties of hybrid bio-composites modified with multi-walled carbon nano-tubes. Compos Part B Eng. 2019;163:455–463.
  • Balakrishnan B, Raja S, Rajagopal A. Influence of MWCNT fillers on vibroacoustic characteristics of polymer nanocomposite and coated aircraft panels. Appl Acoust. 2021;172:107604.
  • Mahdi TH, Islam ME, Hosur MV, et al. Low-velocity impact performance of carbon fiber-reinforced plastics modified with carbon nano-tube, nanoclay and hybrid nanoparticles. J Reinf Plast Compos. 2017;36(9):696–713.
  • Hosur MV, Mohammed AA, Zainuddin S, et al. Processing of nanoclay filled sandwich composites and their response to low-velocity impact loading. Compos Struct. 2008;82(1):101–116.
  • Naresh K, Rajalakshmi K, Vasudevan A, et al. Effect of nanoclay and different impactor shapes on glass/epoxy composites subjected to quasi-static punch shear loading. Adv Mater Process Technol. 2018;1–13.
  • Rafiq A, Merah N, Boukhili R, et al. Impact resistance of hybrid glass fiber reinforced epoxy/nanoclay composite. Polym Test. 2017;57:1–11.
  • Zainuddin S, Hosur MV, Zhou Y, et al. Experimental and numerical investigations on flexural and thermal properties of nanoclay–epoxy nano-composites. Mater Sci Eng A. 2010;527(29–30):7920–7926.
  • Iqbal K, Khan SU, Munir A, et al. Impact damage resistance of CFRP with nanoclay-filled epoxy matrix. Compos Sci Technol. 2009;69(11–12):1949–1957.
  • Avila AF, Soares MI, Neto AS. A study on nanostructured laminated plates behavior under low-velocity impact loadings. Int J Impact Eng. 2007;34(1):28–41.
  • Alamri H, Low IM. Effect of water absorption on the mechanical properties of nanoclay filled recycled cellulose fiber reinforced epoxy hybrid nano-composites. Compos Part A Appl Sci Manuf. 2013;44:23–31.
  • Tcherbi-Narteh A, Hosur M, Triggs E, et al. Thermal stability and degradation of diglycidyl ether of bisphenol A epoxy modified with different nanoclays exposed to UV radiation. Polym Degrad Stab. 2013;98(3):759–770.
  • Balaganesan G, Velmurugan R, Srinivasan M, et al. Energy absorption and ballistic limit of nano-composite laminates subjected to impact loading. Int J Impact Eng. 2014;74:57–66.
  • Sivasaravanan S, Raja VB. Impact characterization of epoxy LY556/E-glass fiber/nano clay hybrid nano composite materials. Procedia Eng. 2014;97:968–974.
  • Reis PNB, Ferreira JAM, Santos P, et al. Impact response of Kevlar composites with filled epoxy matrix. Compos Struct. 2012;94(12):3520–3528.
  • Koricho EG, Khomenko A, Haq M, et al. Effect of hybrid (micro-and nano-) fillers on impact response of GFRP composite. Compos Struct. 2015;134:789–798.
  • Wang Z, Huang X, Bai L, et al. Effect of micro-Al2O3 contents on mechanical property of carbon fiber reinforced epoxy matrix composites. Compos Part B Eng. 2016;91:392–398.
  • Landowski M, Strugała G, Budzik M, et al. Impact damage in SiO2 nanoparticle enhanced epoxy–Carbon fiber composites. Compos Part B Eng. 2017;113:91–99.
  • Alsaadi M, Erkliğ A. Effect of perlite particle contents on delamination toughness of S-glass fiber reinforced epoxy matrix composites. Compos Part B Eng. 2018;141:182–190.
  • Zhang J, Wang X, Lu L, et al. Preparation and performance of high‐impact polystyrene (HIPS)/nano‐TiO2 nano-composites. J Appl Polym Sci. 2003;87(3):381–385.
  • Lin JC. Investigation of impact behavior of various silica-reinforced polymeric matrix nano-composites. Compos Struct. 2008;84(2):125–131.
  • Nayak RK, Mahato KK, Routara BC, et al. Evaluation of mechanical properties of Al2O3 and TiO2 nano filled enhanced glass fiber reinforced polymer composites. J Appl Polym Sci. 2016;133(47). DOI:10.1002/app.44274
  • Nayak RK, Mahato KK, Ray BC. Water absorption behavior, mechanical and thermal properties of nano TiO2 enhanced glass fiber reinforced polymer composites. Compos Part A Appl Sci Manuf. 2016;90:736–747.
  • Demirci MT. Low velocity impact and fracture characterization of SiO2 nanoparticles filled basalt fiber reinforced composite tubes. J Compos Mater. 2020;0021998320915952; 54(23).
  • Uddin MF, Sun CT. Strength of unidirectional glass/epoxy composite with silica nanoparticle-enhanced matrix. Compos Sci Technol. 2008;68(7–8):1637–1643.
  • Kelkar AD, Mohan R, Bolick R, et al. Effect of nanoparticles and nano-fibers on mode I fracture toughness of fiber glass reinforced polymeric matrix composites. Mater Sci Eng B. 2010;168(1–3):85–89.
  • Akinyede O, Mohan R, Kelkar A, et al. Static and fatigue behavior of epoxy/fiberglass composites hybridized with alumina nanoparticles. J Compos Mater. 2009;43(7):769–781.
  • Riley AM, Paynter CD, McGenity PM, et al. Factors affecting the impact properties of mineral filled polypropylene. Plastics and rubber processing and applications. 1990;14(2):85–93.
  • Eskizeybek V, Ulus H, Kaybal HB, et al. Static and dynamic mechanical responses of CaCO3 nanoparticle modified epoxy/carbon fiber nano-composites. Compos Part B Eng. 2018;140:223–231.
  • Ulus H, Üstün T, Şahin ÖS, et al. Low-velocity impact behavior of carbon fiber/epoxy multiscale hybrid nano-composites reinforced with multi-walled carbon nano-tubes and boron nitride nano-plates. J Compos Mater. 2016;50(6):761–770.
  • Lin JC, Chang LC, Nien MH, et al. Mechanical behavior of various nanoparticle filled composites at low-velocity impact. Compos Struct. 2006;74(1):30–36.
  • Siengchin S. Impact, thermal and mechanical properties of high density polyethylene/flax/SiO2 composites: effect of flax reinforcing structures. J Reinf Plast Compos. 2012;31(14):959–966.
  • Vieira LMG, Santos JCD, Panzera TH, et al. Hybrid composites based on sisal fibers and silica nanoparticles. Polym Composites. 2018;39(1):146–156.
  • Kallagunta H, Tate JS. Low-velocity impact behavior of glass fiber epoxy composites modified with nanoceramic particles. J Compos Mater. 2020;54(16):2217–2228.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.