187
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Impact of ureolytic and nonureolytic bacteria on self healing of artificial cracks in biofortified concrete

ORCID Icon, , , &
Pages 841-860 | Accepted 30 Jun 2021, Published online: 19 Jul 2021

References

  • De Muynck W, Debrouwer D, De Belie N, et al. Bacterial carbonate precipitation improves the durability of cementitious materials. Cement Concr Res. 2008;38(7):1005–1014.
  • Seifan M, Samani Ali K, Berenjian A. Induced calcium carbonate precipitation using bacillus species. Appl Microbiol Biotechnol. 2016;100(23):9895–9906.
  • Kumar V, Singh SR, Ahuja IPS, et al. On technological solutions for repair and rehabilitation of heritage sites: a review. Adv Mater Process Technol. 2020;6(1):146–166.
  • Stanaszek-Tomal E. Bacterial concrete as a sustainable building material. Sustainability. 2020;12(2):696.
  • Nardi C, Bullo S, Cecchi A, et al. Self-healing capacity of advanced lime mortars. Adv Mater Process Technol. 2016;2(3):349–360.
  • De Muynk W, Cox K, De Belie N, et al. Bacterial carbonate precipitation as an alternative surface treatment for concrete. Constr Build Mater. 2008;22(5):875–885.
  • Lee YS, Park W. Current challenges and future directions for bacterial self-healing concrete. Appl Microbiol Biotechnol. 2018;102(7):3059–3070.
  • Peplow M. Bioconcrete presages new wave in environmentally friendly construction. Nat Biotechnol. 2020;38(7):776–778.
  • Fischer S, Galinat JK, Bang SS. Microbiological precipitation of CaCO3. Soil Biol Biochem. 1999;31(11):1563–1571.
  • Joshi S, Goyal S, Mukherjee A, et al. Microbial healing of cracks in concrete: a review. J Ind Microbiol Biot. 2017;44(11):1511–1525.
  • Ghosh P, Mandal S, Chattopadhyay BD, et al. Use of microorganism to improve the strength of cement mortar. Cem Concr Res. 2005;35(10):1980–1983.
  • Wang JY, Snoeck D, Van Vlierberghe S, et al. Application of hydrogel encapsulated carbonate-precipitating bacteria for approaching a realistic self-healing in concrete. Constr Build Mater. 2014;68:110–119.
  • Zhang J, Liu Y, Tao F, et al. Immobilizing bacteria in expanded perlite for the crack self-healing in concrete. Constr Build Mater. 2017;148:610–617.
  • Achal V, Pan X, Ozyurt N. Improved strength and durability of fly ash-amended concrete by microbial calcite precipitation. Ecol Eng. 2011;37(4):554–559.
  • Ramachandran SK, Ramakrishnan V, Bang SS. Remediation of concrete using microorganisms. ACI Mater J. 2001;3–9. DOI:10.14359/10154
  • Achal V, Mukerjee A, Reddy MS. Biogenic treatment improves the durability and remediates the cracks of concrete structures. Constr Build Mater. 2013;48:1–5.
  • Krishnapriyaa S, Venkatesh Babu DL, Arulraj GP. Isolation and identification of bacteria to improve the strength of concrete. Microbiol Res. 2015;174:48–55.
  • Andalib R, Majid Zaimi Abd M, Hussin Warid M, et al. Optimum concentration of bacillus megaterium for strengthening structural concrete. Constr Build Mater. 2016;118:180–193.
  • Chahal N, Siddique R. Permeation properties of concrete made with fly ash and silica fume: influence of ureolytic bacteria. Constr Build Mater. 2013;49:161–174.
  • Choi SG, Wang K, Wen Z, et al. Mortar crack repair using microbial induced calcite precipitation method. Cem Concr Compos. 2017;83:209–221.
  • Wiktor V, Jonkers HM. Quantification of crack healing in novel bacteria-based self-healing concrete. Cem Concr Compos. 2011;33(7):763–770.
  • Tittelboom KV, De Belie N, De Muynck W, et al. Use of bacteria to repair cracks in concrete. Cem Concr Res. 2009;157–166. DOI:10.1016/j.cemconres.2009.08.025.
  • Alonso MJC, Ortiz C, Eloir L, et al. Improved strength and durability of concrete through metabolic activity of ureolytic bacteria. Environ Sci Pollut Res. 2017;21451–21458. DOI:10.1007/s11356-017-9347-0.
  • Singh LP, Bisht V, Aswathy MS, et al. Studies on performance enhancement of recycled aggregate by incorporating bio and nano materials. Constr Build Mater. 2018;181:217–226.
  • Son MH, Kim HY, Park MS, et al. Ureolytic/non-Ureolytic Bacteria co-cultured self-healing agent for cementitious materials crack repair. Mater. 2018;11(5):782.
  • Kalhori H, Bagherpour R. Application of carbonate precipitating bacteria for improving properties and repairing cracks of shotcrete. Constr Build Mater. 2017;148:249–260.
  • BIS 8112. Ordinary Portland cement, 43 grade-specification. New Delhi, India: Bureau of Indian standards; 2013.
  • BIS 383. Specifications for coarse and fine aggregates from natural sources for concrete. New Delhi, India: Bureau of Indian standards; 1970.
  • BIS 10262. Concrete mix proportioning-guidelines. New Delhi, India: Bureau of Indian standards; 2019.
  • Tiwari S, Pal S, Puria R, et al. Mechanical and microstructure study of the self healing bacterial concrete. Mater Sci Forum. 2019;969:472–477.
  • Rivadeneyra MA, Delgado R, Del-Moral A, et al. Precipitation of calcium carbonate by Vibrio sp. From an inland saltern. FEMS Microbiol Ecol. 1994;13(3):197–204.
  • Gobac ZZ, Posilovic H, Bermanec V. Identification of biogenetic calcite and aragonite using SEM. Geol Croat. 2009;62(3):201–206.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.