191
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Mechanical characterisation of PEEK-HA composite as an orthopaedic implant

ORCID Icon, , &
Pages 3470-3493 | Accepted 18 Aug 2021, Published online: 02 Sep 2021

References

  • Pandey A, Awasthi A, Saxena KK. Metallic implants with properties and latest production techniques : a review, Advances in Materials and Processing Technologies. 00. 2020;1–36. DOI:10.1080/2374068X.2020.1731236
  • Adhikari, J., Saha, P., & Sinha, A. (2018). Surface modification of metallic bone implants-Polymer and polymer-assisted coating for bone in-growth. In Fundamental Biomaterials: Metals (pp. 299–321). Elsevier.https://doi.org/10.1016/B978-0-08-102205-4.00014-3
  • Prasad K, Bazaka O, Chua M, et al. Metallic biomaterials: current challenges and opportunities. Materials. 2017;10. doi:10.3390/ma10080884.
  • Topoleski LDT, Ducheyne P, Cuckler JM. The fracture toughness of titanium‐fiber‐reinforced bone cement. J Biomed Mater Res. 1599–1617;26(1992). DOI:10.1002/jbm.820261206
  • Nuño N, Groppetti R, Senin N. Static coefficient of friction between stainless steel and PMMA used in cemented hip and knee implants. Clin Biomech. 2006;21:956–962.
  • Chen YT, Hung FY, Syu JC. Biodegradable implantation material: mechanical properties and surface corrosion mechanism of Mg-1Ca-0.5Zr alloy. Metals. 2019;9. doi:10.3390/met9080857.
  • Brailovski, V., & Terriault, P. (2016). Metallic Porous Materials for Orthopedic Implants: Functional Requirements, Manufacture, Characterization, and Modeling. In Reference Module in Materials Science and Materials Engineering. Elsevier.https://doi.org/10.1016/b978-0-12-803581-8.03892-3.
  • Heitz-Mayfield LJA. Peri-implant diseases: diagnosis and risk indicators. J Clin Periodontol. 2008;35:292–304.
  • Kokubo T, Kim HM, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials. 2003;24:2161–2175.
  • Bottai, V., Dell ’osso, G., Celli, F., Bugelli, G., Cazzella, N., Cei, E., … Giannotti, S. (2015). Atq Oa Metabolismo, 12(5), 247–250.
  • Klimecs V, Grishulonoks A, Salma I, et al. Bone Loss around Dental Implants 5 Years after Implantation of Biphasic Calcium Phosphate (HAp/βTCP) Granules. J Healthc Eng. 2018. DOI:10.1155/2018/4804902
  • Crawford, R. W., & Murray, D. W. (1997). Total hip replacement: Indications for surgery and risk factors for failure. Annals of the Rheumatic Diseases. BMJ Publishing Group.https://doi.org/10.1136/ard.56.8.455
  • Rahman MS, Rana MM, Spitzhorn L-S, et al. Fabrication of biocompatible porous scaffolds based on hydroxyapatite/collagen/chitosan composite for restoration of defected maxillofacial mandible bone. Prog Biomater. 2019;8:137–154.
  • Wang, L., Weng, L., Song, S., Zhang, Z., Tian, S., & Ma, R. (2011). Characterization of polyetheretherketone-hydroxyapatite nanocomposite materials. Materials Science and Engineering A, 528(10–11), 3689–3696. https://doi.org/10.1016/j.msea.2011.01.064
  • Vainio, J. (1978). Non-metallic fixatives in orthopedic surgery - Some aspects of their present and future properties. Archives of Orthopaedic and Traumatic Surgery, 92(2–3), 169–174. https://doi.org/10.1007/BF00397955
  • Kotela, I., Chlopek, J., Rosol, P., & Blazewicz, M. (2009). Mechanical assessment of non-metallic composite clamps designed for orthopaedic surgery. Journal of Composite Materials, 43(26), 3265–3274 https://doi.org/10.1177/0021998309345298
  • Shettlemore MG, Bundy KJ, Toxicity measurement of orthopedic implant alloy degradation products using a bioluminescent bacterial assay, (1998).
  • Mirsalehi, S. A., Khavandi, A., Mirdamadi, S. H., Naimi-Jamal, M. R., Roshanfar, S., & Fatehi-Peykani, H. (2016). Synthesis of nano-HA and the effects on the mechanical properties of HA/UHMWPE nanocomposites. Advances in Materials and Processing Technologies, 2(2), 209–219. https://doi.org/10.1080/2374068X.2015.1127544
  • Rebelo R, Fernandes M, Fangueiro R. Biopolymers in Medical Implants: a Brief Review. Procedia Eng. 2017;200:236–243.
  • Prakasam M, Locs J, Salma-Ancane K, et al. Biodegradable materials and metallic implants-A review. J Funct Biomater. 2017;8:1–15.
  • Babu RP, O’Connor K, Seeram R. Current progress on bio-based polymers and their future trends. Prog Biomater. 2013;2:8.
  • Go EJ, Kang EY, Lee SK, et al. An osteoconductive PLGA scaffold with bioactive β-TCP and anti-inflammatory Mg(OH)2 to improve: in vivo bone regeneration. Biomater Sci. 2020;8:937–948.
  • Taniguchi N, Fujibayashi S, Takemoto M, et al. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment. Mater Sci Eng C. 2016;59:690–701.
  • Chohan, J. S., Boparai, K. S., Singh, R., & Hashmi, M. S. J. (2020). Manufacturing techniques and applications of polymer matrix composites: a brief review. Advances in Materials and Processing Technologies. Taylor and Francis Ltd. https://doi.org/10.1080/2374068X.2020.1835012
  • Khandaker M, Utsaha KC, Morris T. Fracture toughness of titanium-cement interfaces: effects of fibers and loading angles. Int J Nanomedicine. 1689–1697;9(2014). DOI:10.2147/IJN.S59253
  • Piekarski K. Fracture of bone. J Appl Phys. 1970;41:215–223.
  • Arifuzzaman Khan, G. M., Alam Shams, M. S., Kabir, M. R., Gafur, M. A., Terano, M., & Alam, M. S. (2013). Influence of chemical treatment on the properties of banana stem fiber and banana stem fiber/coir hybrid fiber reinforced maleic anhydride grafted polypropylene/low-density polyethylene composites. Journal of Applied Polymer Science, 128(2), 1020–1029.https://doi.org/10.1002/app.38197
  • Ridzwan, M. I. Z., Shuib, S., Hassan, A. Y., Shokri, A. A., & Mohammad Ibrahim, M. N. (2007, April 1). Problem of stress shielding and improvement to the hip implant designs: A review. Journal of Medical Sciences. Asian Network for Scientific Information https://doi.org/10.3923/jms.2007.460.467.
  • Silva ADS, Rodrigues BVM, Oliveira FC, et al. Characterization and in vitro and in vivo assessment of poly(butylene adipate-co-terephthalate)/nano-hydroxyapatite composites as scaffolds for bone tissue engineering. J Polym Res. 2019;26:53.
  • Dey SK, Chatterjee S, Spieckermann F, et al. Reversing and non-reversing effects of PEEK-HA composites on tuning cooling rate during crystallization. J Polym Res. 2019;26. DOI:10.1007/s10965-019-1967-2.
  • Abu Bakar MS, Cheng MHW, Tang SM, et al. Tensile properties, tension-tension fatigue and biological response of polyetheretherketone-hydroxyapatite composites for load-bearing orthopedic implants. Biomaterials. 2003;24:2245–2250.
  • Feik SA, Thomas CDL, Clement JG. Age-related changes in cortical porosity of the midshaft of the human femur. J Anat. 1997;191:407–416.
  • Luo H, Wang F, Cheng C, et al. Mapping the Young’s modulus distribution of the human tympanic membrane by microindentation. Hear Res. 2019;378:75–91.
  • Launey, M. E., Buehler, M. J., & Ritchie, R. O. (2010). On the mechanistic origins of toughness in bone. Annual Review of Materials Research, 40, 25–53. https://doi.org/10.1146/annurev-matsci-070909-104427
  • . https://doi.org/10.1016/0376-4583(85)90030-5
  • Shacham S, Castel D, Gefen A. Measurements of the static friction coefficient between bone and muscle tissues. J Biomech Eng. 2010;132:1–4.
  • Chen H‐L, Porter RS. Melting behavior of poly(ether ether ketone) in its blends with poly(ether imide). J Polym Sci B Polym Phys. 1993;31:1845–1850.
  • Lee Y, Porter RS. Crystallization of PEEK in Carbon Fiber Composites. Polym Eng Sci. 1986;26:633–639.
  • Shuai C, Zhou Y, Yang Y, et al. Biodegradation resistance and bioactivity of hydroxyapatite enhanced Mg-Zn composites via selective laser melting. Materials. 2017;10. doi:10.3390/ma10030307.
  • C20, A. (2019). ASTM C20 - Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water 1.https://doi.org/10.1520/C0020-00R15.2.
  • Jarman-Smith, M., Brady, M., Kurtz, S. M., Cordaro, N. M., & Walsh, W. R. (2012). Porosity in Polyaryletheretherketone. In PEEK Biomaterials Handbook (pp. 181–199). Elsevier Inc.https://doi.org/10.1016/B978-1-4377-4463-7.10012-0
  • ASTM International. (2002). ASTM D6068-96(Reapproved 2002) Standard Test Method for Determining J-R Curves of Plastic Materials.https://doi.org/10.1520/D6068-10.2.
  • Pan Y, Chen Y, Shen Q. Flexural Mechanical Properties of Functional Gradient Hydroxyapatite Reinforced Polyetheretherketone Biocomposites. J Mater Sci Technol. 2016;32:34–40.
  • Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Thu Oct 26 09:56:57 GMT+00:00 2006, Uncontrolled Copy, (c) BSI BRITISH STANDARD Plastics — determination of flexural properties BS EN ISO 178:2003 Incorporating Corrigendum No. 1 an, BSi. 3 (2005).
  • Banoriya, D., Purohit, R., & Dwivedi, R. K. (2020). Wear performance of titanium reinforced biocompatible TPU. Advances in Materials and Processing Technologies, 6(2), 336–343.https://doi.org/10.1080/2374068X.2020.1731232
  • Abbasi N, Hamlet S, Love RM, et al. Journal of Science : advanced Materials and Devices Porous scaffolds for bone regeneration. J Sci. 2020;5:1–9.
  • Bandyopadhyay A, Espana F, Balla VK, et al. Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants. Acta Biomater. 2010;6:1640–1648.
  • Wang, J., Xu, A. M., Zhang, J. Y., He, X. M., Pan, Y. S., Cheng, G., … Wang, Z. J. (2016). Prognostic significance of long non-coding RNA MALAT-1 in various human carcinomas: A meta-analysis. Genetics and Molecular Research, 15(1) https://doi.org/10.4238/gmr.15017433.
  • Tang, S. M., Cheang, P., AbuBakar, M. S., Khor, K. A., & Liao, K. (2004). Tension-tension fatigue behavior of hydroxyapatite reinforced polyetheretherketone composites. International Journal of Fatigue, 26(1), 49–57.
  • Conrad, T. L., Jaekel, D. J., Kurtz, S. M., & Roeder, R. K. (2013). Effects of the mold temperature on the mechanical properties and crystallinity of hydroxyapatite whisker-reinforced polyetheretherketone scaffolds. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 101(4), 576–583. https://doi.org/10.1002/jbm.b.32859
  • Wang L, Weng L, Song S, et al. Mechanical properties and microstructure of polyetheretherketone – hydroxyapatite nanocomposite materials. Mater Lett. 2010;64:2201–2204.
  • Wang L, Weng L, Song S, et al. Characterization of polyetheretherketone – hydroxyapatite nanocomposite materials. 2011;528:3689–3696. https://doi.org/10.1016/j.msea.2011.01.064
  • R. Subramanya, D.N.S. Reddy, P. Shimoga, Tensile, impact and fracture toughness properties of banana fibre-reinforced polymer composites, Advances in Materials and Processing Technologies. 00 (2020) 1–8. https://doi.org/10.1080/2374068X.2020.1734350.
  • Spiegelberg S, Kozak A, Braithwaite G. UHMWPE Biomaterials Handbook 29 Characterization of Physical, Chemical, and Mechanical Properties of UHMWPE, Third Edit, Elsevier Inc. 2016.
  • Gietl H, Olbrich S, Riesch J, et al. Estimation of the fracture toughness of tungsten fibre-reinforced tungsten composites. Eng Fract Mech. 2020;232:107011.
  • Koester KJ, Ager JW, Ritchie RO. The true toughness of human cortical bone measured with realistically short cracks. Nat Mater. 2008;7:672–677.
  • X.Q. Pei, R. Bennewitz, M. Busse, A.K. Schlarb, Effects of single asperity geometry on friction and wear of PEEK, Wear. 304 (2013) 109–117. https://doi.org/10.1016/j.wear.2013.04.032.
  • Song J, Shi H, Liao Z, et al. Study on the nanomechanical and nanotribological behaviors of PEEK and CFRPEEK for biomedical applications, Polymers. 2018;10. DOI:10.3390/polym10020142.
  • Almasi D, Jye W, Sajad L, et al. Fabrication of a novel hydroxyapatite/polyether ether ketone surface nanocomposite via friction stir processing for orthopedic and dental applications, Progress in Biomaterials. 2020.
  • K. Cao, S. Feng, Y. Han, L. Gao, T.H. Ly, Z. Xu, Y. Lu, Elastic straining of free-standing monolayer graphene, Nature Communications. (2020) 1–7. https://doi.org/10.1038/s41467-019-14130-0.
  • S.P. Khanal, H. Mahfuz, A.J. Rondinone, T. Leventouri, Improvement of the fracture toughness of hydroxyapatite (HAp) by incorporation of carboxyl functionalized single walled carbon nanotubes (CfSWCNTs) and nylon, Materials Science and Engineering C. 60 (2016) 204–210. https://doi.org/10.1016/j.msec.2015.11.030.
  • Zha C, Hu J, Li A, et al. Nanoindentation Study on Mechanical Properties of Nano-SiO 2/Dental Resin Composites. 2018;57–64. DOI:10.4236/msce.2018.64008.
  • M. Raghavan, N.D. Sahar, D.H. Kohn, M.D. Morris, Age-specific profiles of tissue-level composition and mechanical properties in murine cortical bone, Bone. 50 (2012) 942–953. https://doi.org/10.1016/j.bone.2011.12.026.
  • Zioupos P. In vivo fatigue microcracks in human bone: material properties of the surrounding bone matrix. 2005;42:31–41. European Journal of Morphology.
  • Ma, J., Li, Z. J., Xue, Y. Z. B., Liang, X. Y., Tan, Z. J., & Tang, B. (2020). Novel PEEK/nHA composites fabricated by hot-pressing of 3D braided PEEK matrix. Advanced Composites and Hybrid Materials, 3(2), 156–166.https://doi.org/10.1007/s42114-020-00147-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.