221
Views
6
CrossRef citations to date
0
Altmetric
Review Article

A comprehensive analysis on magnesium-based alloys and metal matrix composites for their in-vitro biocompatibility

, , , ORCID Icon &
Pages 1249-1282 | Accepted 09 Aug 2022, Published online: 23 Aug 2022

References

  • Chung DD. Composite materials: science and applications. Germany: Springer Science & Business Media; 2010.
  • Ibrahim IA, Mohamed FA, Lavernia EJ. Particulate reinforced metal matrix composites—a review. J Mater Sci. 1991;26(5):1137–1156.
  • Vahid A, Hodgson P, Li Y. New porous Mg composites for bone implants. J Alloys Compd. 2017;724:176–186.
  • Kaczmar JW, Pietrzak K, Włosiński W. The production and application of metal matrix composite materials. J Mater Process Technol. 2000;106(1–3):58–67.
  • Hort N, Kainer KU. Powder metallurgically manufactured metal matrix composites. Metal Matrix Composites: Custom-made Materials for Automotive and Aerospace Engineering. 2006;243–274
  • Hashim J, Looney L, Hashmi MSJ. Metal matrix composites: production by the stir casting method. J Mater Process Technol. 1999;92-93:1–7.
  • Ghomashchi MR, Vikhrov A. Squeeze casting: an overview. J Mater Process Technol. 2000;101(1–3):1–9.
  • Yue TM, Chadwick GA. Squeeze casting of light alloys and their composites. J Mater Process Technol. 1996;58(2–3):302–307.
  • Vijayaram TR, Sulaiman S, Hamouda AMS, et al. Fabrication of fiber reinforced metal matrix composites by squeeze casting technology. J Mater Process Technol. 2006;178(1–3):34–38.
  • Lavernia EJ, Grant NJ. Spray deposition of metals: a review. Mat Sci Eng. 1988;98:381–394.
  • Haghshenas M. Mechanical characteristics of biodegradable magnesium matrix composites: a review. J Magnesium Alloys. 2017;5(2):189–201.
  • Ghosh AK. Fundamentals of metal matrix composites. Stoneham (MA): Butterworth-Hinemann; 1993. p. 3–22.
  • Hunt WH. Processing and fabrication of advanced materials, the minerals and metal materials society. Warrendale (PA); 1994.
  • Clyne TW, Withers PJ. An introduction to metal matrix composites. United Kingdom: Cambridge university press; 1995.
  • Chawla N, Chawla KK. Wear and corrosion. In: Metal matrix composites. New York (NY): Springer; 2013. p. 311–324.
  • Guo ZX, Derby B. Solid-state fabrication and interfaces of fibre reinforced metal matrix composites. Pro Mater Sci. 1995;39(4–5):411–495.
  • Surappa MK. Microstructure evolution during solidification of DRMMCs (Discontinuously reinforced metal matrix composites): state of art. J Mater Process Technol. 1997;63(1–3):325–333.
  • Hanawa T. Research and development of metals for medical devices based on clinical needs. Sci Technol Adv Mater. 2012;13(6):064102.
  • Chen Y, Xu Z, Smith C, et al. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 2014;10(11):4561–4573.
  • Sheikh Z, Najeeb S, Khurshid Z, et al. Biodegradable materials for bone repair and tissue engineering applications. Materials. 2015;8(9):5744–5794.
  • Vojtech D, Kubasek J, Capek J, et al. Comparative mechanical and corrosion studies on magnesium, zinc and iron alloys as biodegradable metals. Mater Technol. 2015;49:877–882.
  • Tan L, Yu X, Wan P, et al. Biodegradable materials for bone repairs: a review. J Mater Sci Technol. 2013;29(6):503–513.
  • Saris NEL, Mervaala E, Karppanen H, et al. Magnesium: an update on physiological, clinical and analytical aspects. Clin Chim Acta. 2000;294(1–2):1–26.
  • Ren Y, Sikder P, Lin B, et al. Microwave assisted coating of bioactive amorphous magnesium phosphate (AMP) on polyetheretherketone (PEEK). Mater Sci Eng C. 2018;85:107–113.
  • He LY, Zhang XM, Liu B, et al. Effect of magnesium ion on human osteoblast activity. Braz J Med Biol Res. 2016;49(7). DOI:10.1590/1414-431x20165257
  • Wallach S. Effects of magnesium on skeletal metabolism. Magne trace ele. 1990;9(1):1–14.
  • Grünewald TA, Rennhofer H, Hesse B, et al. Magnesium from bioresorbable implants: distribution and impact on the nano-and mineral structure of bone. Biomaterials. 2016;76:250–260.
  • Kannan MB, Raman RS. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid. Biomaterials. 2008;29(15):2306–2314.
  • Cotton FA, Wilkinson G. Anorganische chemie: eine zusammenfassende Darstellung für Fortgeschrittene. Germany: Verlag Chemie; 1974.
  • Wiberg E. Lehrbuch der anorganischen Chemie. Germany: Walter de Gruyter GmbH & Co KG; 2019.
  • Bodaker I, Sharon I, Suzuki MT, et al. Comparative community genomics in the dead sea: an increasingly extreme environment. ISME J. 2010;4(3):399–407.
  • Maguire ME, Cowan JA. Magnesium chemistry and biochemistry. Biometals. 2002;15(3):203–210.
  • Wacker WE. Magnesium and man. United Kingdom: Harvard University Press; 2013.
  • Elin RJ. Magnesium metabolism in health and disease. Disease-a-month. 1988;34(4):166–218.
  • Swaminathan R. Magnesium metabolism and its disorders. Clin Biochem Rev. 2003;24(2):47.
  • Cafri M, Dilman H, Dariel MP, et al. Boron carbide/magnesium composites: processing, microstructure and properties. J Eur Ceram Soc. 2012;32(12):3477–3483.
  • Shamekh M, Pugh M, Medraj M. Understanding the reaction mechanism of in-situ synthesized (TiC–TiB2)/AZ91 magnesium matrix composites. Mater Chem Phys. 2012;135(1):193–205.
  • Sunil BR, Kumar TS, Chakkingal U, et al. Friction stir processing of magnesium–nanohydroxyapatite composites with controlled in vitro degradation behavior. Mater Sci Eng C. 2014;39:315–324.
  • Kumar DS, Sasanka CT, Ravindra K, et al. Magnesium and its alloys in automotive applications–a review. Am J Mater Sci Technol. 2015;4(1):12–30.
  • Moosbrugger C, Ed. Engineering properties of magnesium alloys. United States: ASM International; 2017.
  • Sunil BR, Ganapathy C, Kumar TS, et al. Processing and mechanical behavior of lamellar structured degradable magnesium–hydroxyapatite implants. J Mech Behav Biomed Mater. 2014;40:178–189.
  • Dutta S, Gupta S, Roy M. Recent developments in magnesium metal–matrix composites for biomedical applications: a review. ACS Biomater Sci Eng. 2020;6(9):4748–4773.
  • Zhang S, Zhang X, Zhao C, et al. Research on an Mg–Zn alloy as a degradable biomaterial. Acta Biomater. 2010;6(2):626–640.
  • Gupta UC, Gupta SC. Sources and deficiency diseases of mineral nutrients in human health and nutrition: a review. Pedosphere. 2014;24(1):13–38.
  • Koltygin AV, Bazhenov VE, Khasenova RS, et al. Effects of small additions of Zn on the microstructure, mechanical properties and corrosion resistance of WE43B Mg alloys. Int J Miner Metall Mater. 2019;26(7):858–868.
  • Cai S, Lei T, Li N, et al. Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg–Zn alloys. Mater Sci Eng C. 2012;32(8):2570–2577.
  • Huan ZG, Leeflang MA, Zhou J, et al. In vitro degradation behavior and cytocompatibility of Mg–Zn–Zr alloys. J Mater Sci. 2010;21(9):2623–2635.
  • Zhang E, He W, Du H, et al. Microstructure, mechanical properties and corrosion properties of Mg–Zn–Y alloys with low Zn content. Mater Sci Eng A. 2008;488(1–2):102–111.
  • Sun Y, Zhang B, Wang Y, et al. Preparation and characterization of a new biomedical Mg–Zn–Ca alloy. Mater Des. 2012;34:58–64.
  • Ma YZ, Yang CL, Liu YJ, et al. Microstructure, mechanical, and corrosion properties of extruded low-alloyed Mg-x Zn-0.2 Ca alloys. Int J Miner Metall Mater. 2019;26(10):1274–1284.
  • Li HX, Qin SK, Ma YZ, et al. Effects of Zn content on the microstructure and the mechanical and corrosion properties of as-cast low-alloyed Mg–Zn–Ca alloys. Int J Miner Metall Mater. 2018;25(7):800–809.
  • Rokhlin LL. Advanced magnesium alloys with rare-earth metal additions. In: Advanced light alloys and composites. Dordrecht: Springer; 1998. p. 443–448. 9780429179228.
  • Hänzi AC, Gunde P, Schinhammer M, et al. On the biodegradation performance of an Mg–Y–RE alloy with various surface conditions in simulated body fluid. Acta Biomater. 2009;5(1):162–171.
  • Carboneras M, Múnez CJ, Rodrigo P, et al. Effect of heat treatment on the corrosion behaviour of a Mg-Y Alloy in chloride medium. In: Materials science forum. Vol. 636. Switzerland: Trans Tech Publications Ltd; 2010. p. 491–496.
  • Zeller-Plumhoff B, Malich C, Krüger D, et al. Analysis of the bone ultrastructure around biodegradable Mg–xGd implants using small angle X-ray scattering and X-ray diffraction. Acta Biomater. 2020;101:637–645.
  • Windhagen H, Radtke K, Weizbauer A, et al. Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study. Biomed Eng Online. 2013;12(1):1–10.
  • Biber R, Pauser J, Geßlein M, et al. Magnesium-based absorbable metal screws for intra-articular fracture fixation. Case Rep Orthop. 2016;2016:1–4.
  • Grass G, Rensing C, Solioz M. Metallic copper as an antimicrobial surface. Appl Environ Microbiol. 2011;77(5):1541.
  • Ren L, Xu L, Feng J, et al. In vitro study of role of trace amount of Cu release from Cu-bearing stainless steel targeting for reduction of in-stent restenosis. J Mater Sci. 2012;23(5):1235–1245.
  • Yan X, Wan P, Tan L, et al. Corrosion and biological performance of biodegradable magnesium alloys mediated by low copper addition and processing. Mater Sci Eng C. 2018;93:565–581.
  • Yan X, Wan P, Tan L, et al. Influence of hybrid extrusion and solution treatment on the microstructure and degradation behavior of Mg-0.1 Cu alloy. Mater Sci Eng B. 2018;229:105–117.
  • Yan X, Zhao MC, Yang Y, et al. Improvement of biodegradable and antibacterial properties by solution treatment and micro-arc oxidation (MAO) of a magnesium alloy with a trace of copper. Corros Sci. 2019;156:125–138.
  • Pennington JAT. Silicon in foods and diets. Food Addit Contam. 1991;8(1):97–118.
  • Gu X, Zheng Y, Cheng Y, et al. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials. 2009;30(4):484–498.
  • Ben-Hamu G, Eliezer D, Shin KS. The role of Mg2Si on the corrosion behavior of wrought Mg–Zn–Mn alloy. Intermetallics. 2008;16(7):860–867.
  • Srinivasan A, Ningshen S, Mudali UK, et al. Influence of Si and Sb additions on the corrosion behavior of AZ91 magnesium alloy. Intermetallics. 2007;15(12):1511–1517.
  • Mallick PK, Ed. Materials, design and manufacturing for lightweight vehicles. United Kingdom: Woodhead publishing; 2020. 9780128190296.
  • Renkema KY, Alexander RT, Bindels RJ, et al. Calcium and phosphate homeostasis: concerted interplay of new regulators. Ann Med. 2008;40(2):82–91.
  • Li Z, Gu X, Lou S, et al. The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials. 2008;29(10):1329–1344.
  • Bakhsheshi-Rad HR, Idris MH, Abdul-Kadir MR, et al. Mechanical and bio-corrosion properties of quaternary Mg–Ca–Mn–Zn alloys compared with binary Mg–Ca alloys. Mater Des. 2014;53:283–292.
  • Marie PJ, Ammann P, Boivin G, et al. Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tissue Int. 2001;69(3):121.
  • Dahl SG, Allain P, Marie PJ, et al. Incorporation and distribution of strontium in bone. Bone. 2001;28(4):446–453.
  • Seiler HG, Sigel H, Sigel A. Handbook on toxicity of inorganic compounds (United States). 1988.
  • Gu XN, Xie XH, Li N, et al. In vitro and in vivo studies on a Mg–Sr binary alloy system developed as a new kind of biodegradable metal. Acta Biomater. 2012;8(6):2360–2374.
  • Zhao MC, Zhao YC, Yin DF, et al. Biodegradation behavior of coated as-extruded Mg–Sr alloy in simulated body fluid. Acta Metall Sin. 2019;32(10):1195–1206.
  • Ghasali E, Alizadeh M, Niazmand M, et al. Fabrication of magnesium-boron carbide metal matrix composite by powder metallurgy route: comparison between microwave and spark plasma sintering. J Alloys Compd. 2017;697:200–207.
  • Sunil BR, Kumar TS, Chakkingal U, et al. Nano-hydroxyapatite reinforced AZ31 magnesium alloy by friction stir processing: a solid state processing for biodegradable metal matrix composites. J Mater Sci. 2014;25(4):975–988.
  • Cui L, Hu L, Guo X, et al. Kinetic, isotherm and thermodynamic investigations of Cu2+ adsorption onto magnesium hydroxyapatite/ferroferric oxide nano-composites with easy magnetic separation assistance. J Mol Liq. 2014;198:157–163.
  • Zhao W, Huang SJ, Wu YJ, et al. Particle size and particle percentage effect of AZ61/SiCp magnesium matrix micro-and nano-composites on their mechanical properties due to extrusion and subsequent annealing. Metals. 2017;7(8):293.
  • Chelliah NM, Singh H, Surappa MK. Processing and mechanical properties of in-situ magnesium matrix composites containing nano-sized polymer derived sicno particles. ICCM Int Conf Compos Mater. 2017;65–76.
  • Navazani M, Dehghani K. Fabrication of Mg-ZrO2 surface layer composites by friction stir processing. J Mater Process Technol. 2016;229:439–449.
  • Singh BP, Singh D, Mathur RB, et al. Influence of surface modified MWCNTs on the mechanical, electrical and thermal properties of polyimide nanocomposites. Nanoscale Res Lett. 2008;3(11):444–453.
  • Saikrishna N, Reddy GPK, Munirathinam B, et al. An investigation on the hardness and corrosion behavior of MWCNT/Mg composites and grain refined Mg. J Magnesium Alloys. 2018;6(1):83–89.
  • Arab SM, Zebarjad SM, Jahromi SAJ. Fabrication of AZ31/MWCNTs surface metal matrix composites by friction stir processing: investigation of microstructure and mechanical properties. J Mater Eng Perform. 2017;26(11):5366–5374.
  • Sharma V, Prakash U, Kumar BM. Surface composites by friction stir processing: a review. J Mater Process Technol. 2015;224:117–134.
  • Song YW, Shan DY, Han EH. Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application. Mater Lett. 2008;62(17–18):3276–3279.
  • Gu X, Zhou W, Zheng Y, et al. Microstructure, mechanical property, bio-corrosion and cytotoxicity evaluations of Mg/HA composites. Mater Sci Eng C. 2010;30(6):827–832.
  • Elangovan K, Balasubramanian V, Valliappan M. Effect of tool pin profile and tool rotational speed on mechanical properties of friction stir welded AA6061 aluminium alloy. Mater Manuf Processes. 2008;23(3):251–260.
  • Torralba JD, Da Costa CE, Velasco F. P/M aluminum matrix composites: an overview. J Mater Process Technol. 2003;133(1–2):203–206.
  • Wong WLE, Gupta M. Improving overall mechanical performance of magnesium using nano‐alumina reinforcement and energy efficient microwave assisted processing route. Adv Eng Mater. 2007;9(10):902–909.
  • Lim CYH, Lim SC, Gupta M. Wear behaviour of SiCp-reinforced magnesium matrix composites. Wear. 2003;255(1–6):629–637. Callister, W. D., & Rethwisch, D. G. (2011). Materials science and engineering (Vol. 5, pp. 344–348). NY: John wiley & sons.
  • Dey A, Pandey KM. Magnesium metal matrix composites-a review. Rev Adv Mat Sci. 2015;42(1):58–67.
  • Nie KB, Wang XJ, Hu XS, et al. Microstructure and mechanical properties of SiC nanoparticles reinforced magnesium matrix composites fabricated by ultrasonic vibration. Mater Sci Eng A. 2011;528(15):5278–5282.
  • Wang XJ, Wang NZ, Wang LY, et al. Processing, microstructure and mechanical properties of micro-SiC particles reinforced magnesium matrix composites fabricated by stir casting assisted by ultrasonic treatment processing. Mater Des. 2014;57:638–645.
  • Xi YL, Chai DL, Zhang WX, et al. Titanium alloy reinforced magnesium matrix composite with improved mechanical properties. Scr Mater. 2006;54(1):19–23.
  • Zhang X, Liao L, Ma N, et al. Mechanical properties and damping capacity of magnesium matrix composites. Compos Part A Appl Sci Manuf. 2006;37(11):2011–2016.
  • Cao W, Zhang C, Fan T, et al. In situ synthesis and damping capacities of TiC reinforced magnesium matrix composites. Mater Sci Eng A. 2008;496(1–2):242–246.
  • Dong Q, Chen LQ, Zhao MJ, et al. Synthesis of TiCp reinforced magnesium matrix composites by in situ reactive infiltration process. Mater Lett. 2004;58(6):920–926.
  • Xiuqing Z, Haowei W, Lihua L, et al. In situ synthesis method and damping characterization of magnesium matrix composites. Compos Sci Technol. 2007;67(3–4):720–727.
  • Jiang QC, Li XL, Wang HY. Fabrication of TiC particulate reinforced magnesium matrix composites. Scr Mater. 2003;48(6):713–717.
  • Balakrishnan M, Dinaharan I, Palanivel R, et al. Synthesize of AZ31/TiC magnesium matrix composites using friction stir processing. J Magnesium Alloys. 2015;3(1):76–78.
  • Gu XY, Sun DQ, Liu L. Transient liquid phase bonding of TiC reinforced magnesium metal matrix composites (TiCP/AZ91D) using aluminum interlayer. Mater Sci Eng A. 2008;487(1–2):86–92.
  • Anasori B, El’ad NC, Barsoum MW. Fabrication and mechanical properties of pressureless melt infiltrated magnesium alloy composites reinforced with TiC and Ti2AlC particles. Mater Sci Eng A. 2014;618:511–522.
  • Sklenička V, Svoboda M, Pahutova M, et al. Microstructural processes in creep of an AZ 91 magnesium-based composite and its matrix alloy. Mater Sci Eng A. 2001;319-321:741–745.
  • Jayalakshmi S, Kailas SV, Seshan S. Tensile behaviour of squeeze cast AM100 magnesium alloy and its Al2O3 fibre reinforced composites. Compos Part A Appl Sci Manuf. 2002;33(8):1135–1140.
  • Bakkar A, Neubert V. Corrosion characterisation of alumina–magnesium metal matrix composites. Corros Sci. 2007;49(3):1110–1130.
  • Cay H, Xu H, Li Q. Mechanical behavior of porous magnesium/alumina composites with high strength and low density. Mater Sci Eng A. 2013;574:137–142.
  • Lu D, Jiang Y, Zhou R. Wear performance of nano- Al2O3 particles and CNTs reinforced magnesium matrix composites by friction stir processing. Wear. 2013;305(1–2):286–290.
  • Srinivasan M, Loganathan C, Balasubramanian V, et al. Feasibility of joining AZ31B magnesium metal matrix composite by friction welding. Mater Des. 2011;32(3):1672–1676.
  • Bhingole PP, Chaudhari GP, Nath SK. Processing, microstructure and properties of ultrasonically processed in situ MgO–Al2O3–MgAl2O4 dispersed magnesium alloy composites. Compos Part A Appl Sci Manuf. 2014;66:209–217.
  • Nguyen QB, Sim YHM, Gupta M, et al. Tribology characteristics of magnesium alloy AZ31B and its composites. Tribol Int. 2015;82:464–471.
  • Park Y, Cho K, Park I, et al. Fabrication and mechanical properties of magnesium matrix composite reinforced with Si coated carbon nanotubes. Procedia Eng. 2011;10:1446–1450.
  • Yoo SJ, Han SH, Kim WJ. Magnesium matrix composites fabricated by using accumulative roll bonding of magnesium sheets coated with carbon-nanotube-containing aluminum powders. Scr Mater. 2012;67(2):129–132.
  • Li CD, Wang XJ, Wu K, et al. Distribution and integrity of carbon nanotubes in carbon nanotube/magnesium composites. J Alloys Compd. 2014;612:330–336.
  • Mindivan H, Efe A, Kosatepe AH, et al. Fabrication and characterization of carbon nanotube reinforced magnesium matrix composites. Appl Surf Sci. 2014;318:234–243.
  • Schaller R, Mari D, Dos Santos SM, et al. Investigation of hydrogen storage in carbon nanotube–magnesium matrix composites. Mater Sci Eng A. 2009;521-522:147–150.
  • Li CD, Wang XJ, Liu WQ, et al. Microstructure and strengthening mechanism of carbon nanotubes reinforced magnesium matrix composite. Mater Sci Eng A. 2014;597:264–269.
  • Li CD, Wang XJ, Liu WQ, et al. Effect of solidification on microstructures and mechanical properties of carbon nanotubes reinforced magnesium matrix composite. Mater Des. 2014;58:204–208.
  • Yuan X, Huang S. Microstructural characterization of MWCNTs/magnesium alloy composites fabricated by powder compact laser sintering. J Alloys Compd. 2015;620:80–86.
  • Nai MH, Wei J, Gupta M. Interface tailoring to enhance mechanical properties of carbon nanotube reinforced magnesium composites. Mater Des. 2014;60:490–495.
  • Jiang QC, Wang HY, Ma BX, et al. Fabrication of B4C particulate reinforced magnesium matrix composite by powder metallurgy. J Alloys Compd. 2005;386(1–2):177–181.
  • Li J, Wang F, Weng W, et al. Characteristic and mechanical properties of magnesium matrix composites reinforced with Mg2B2O5w and B4Cp. Mater Des. 2012;37:533–536.
  • Yao Y, Chen L. Processing of B4C particulate-reinforced magnesium-matrix composites by metal-assisted melt infiltration technique. J Mater Sci Technol. 2014;30(7):661–665.
  • Hu B, Peng L, Powell BR, et al. Interfacial and fracture behavior of short-fibers reinforced AE44 based magnesium matrix composites. J Alloys Compd. 2010;504(2):527–534.
  • Zhang X, Zhang Q, Hu H. Tensile behaviour and microstructure of magnesium AM60-based hybrid composite containing Al2O3 fibres and particles. Mater Sci Eng A. 2014;607:269–276.
  • Jun TIAN, Shi ZQ. Creep mechanism and creep constitutive model of aluminum silicate short-fiber-reinforced magnesium matrix composite. Trans Nonferrous Met Soc China. 2014;24(3):632–640.
  • Xiong G, Nie Y, Ji D, et al. Characterization of biomedical hydroxyapatite/magnesium composites prepared by powder metallurgy assisted with microwave sintering. Curr Appl Phys. 2016;16(8):830–836.
  • Del Campo R, Savoini B, Muñoz A, et al. Mechanical properties and corrosion behavior of Mg–HAP composites. J Mech Behav Biomed Mater. 2014;39:238–246.
  • Witte F, Feyerabend F, Maier P, et al. Biodegradable magnesium–hydroxyapatite metal matrix composites. Biomaterials. 2007;28(13):2163–2174.
  • Khalajabadi SZ, Kadir MRA, Izman S, et al. Fabrication, bio-corrosion behavior and mechanical properties of a Mg/HA/MgO nanocomposite for biomedical applications. Mater Des. 2015;88:1223–1233.
  • Jaiswal S, Kumar RM, Gupta P, et al. Mechanical, corrosion and biocompatibility behaviour of Mg-3Zn-HA biodegradable composites for orthopaedic fixture accessories. J Mech Behav Biomed Mater. 2018;78:442–454.
  • Garcés G, Rodríguez M, Perez P, et al. Effect of volume fraction and particle size on the microstructure and plastic deformation of Mg–Y2O3 composites. Mater Sci Eng A. 2006;419(1–2):357–364.
  • Wang YN, Huang JC. The role of twinning and untwinning in yielding behavior in hot-extruded Mg–Al–Zn alloy. Acta materialia. 2007;55(3):897–905.
  • Singh H, Sarabjit NJ, Tyagi AK. An overview of metal matrix composite: processing and SiC based mechanical properties. J Eng Res Stud. 2011;2:72–78.
  • Jayakumar J, Raghunath BK, Rao TH. Enhancing microstructure and mechanical properties of AZ31-MWCNT nanocomposites through mechanical alloying. Adv Mater Sci Eng. 2013;2013:1–6.
  • Tański T. Surface layers on the Mg-Al-Zn alloys coated using the CVD and PVD methods. J Achieve Mater Manuf Eng. 2012;53(2):89–96.
  • Anish R, Pragash MS, Singh GR. Development and characterization of AZ31B Mg alloy using powder metallurgy technique followed by hot extrusion. In: Advanced materials research. Vol. 984. Switzerland: Trans Tech Publications Ltd; 2014. p. 124–128.
  • Dixit S, Mahata A, Mahapatra DR, et al. Multi-layer graphene reinforced aluminum–manufacturing of high strength composite by friction stir alloying. Compos Part B Eng. 2018;136:63–71.
  • Suresh S, Moorthi NSV. Process development in stir casting and investigation on microstructures and wear behavior of TiB2 on Al6061 MMC. Procedia Eng. 2013;64:1183–1190.’.
  • Thandalam SK, Ramanathan S, Sundarrajan S. Synthesis, microstructural and mechanical properties of ex situ zircon particles (ZrSiO4) reinforced Metal Matrix Composites (MMCs): a review. J Mater Res Technol. 2015;4(3):333–347.
  • Lin PC, Huang SJ, Hong PS. Formation of magnesium metal matrix composites Al2O3p/AZ91D and their mechanical properties after heat treatment. Acta Metall Slovaca. 2010;16(4):237–245.
  • Hu H. Squeeze casting of magnesium alloys and their composites. J Mater Sci. 1998;33(6):1579–1589.
  • Jayasathyakawin S, Ravichandran M, Baskar N, et al. Mechanical properties and applications of magnesium alloy–review. Mater Today Proc. 2020;27:909–913.
  • Jayasathyakawin S, Ravichandran M, Baskar N, et al. Magnesium matrix composite for biomedical applications through powder metallurgy–REVIEW. Mater Today Proc. 2020;27:736–741.
  • Xiong G, Nie Y, Ji D, et al. Characterization of biomedical hydroxyapatite/magnesium composites prepared by powder metallurgy assisted with microwave sintering. Curr Appl Phys. 2016;16(8):830–836.
  • Carboneras M, Hernández LS, Del Valle JA, et al. Corrosion protection of different environmentally friendly coatings on powder metallurgy magnesium. J Alloys Compd. 2010;496(1–2):442–448.
  • Ali M, Hussein MA, Al-Aqeeli N. Magnesium-based composites and alloys for medical applications: a review of mechanical and corrosion properties. J Alloys Compd. 2019;792:1162–1190.
  • Bommala VK, Krishna MG, Rao CT. Magnesium matrix composites for biomedical applications: a review. J Magnesium Alloys. 2019;7(1):72–79.
  • Xie C, Li H, Zhou X, et al. Corrosion behavior of cold sprayed pure zinc coating on magnesium. Surf Coat Technol. 2019;374:797–806.
  • Hou J, Du W, Zhao C, et al. Study on the behaviors of multi-walled carbon nanotubes modified by gemini sulfonate dispersant and their reinforced magnesium matrix composite. Mater Chem Phys. 2019;229:279–285.
  • Oshida Y. Biomedical applications. In: Magnesium Materials. De Gruyter; 2021. p. 726–786.
  • Wan Y, Cui T, Li W, et al. Mechanical and biological properties of bio glass/magnesium composites prepared via microwave sintering route. Mater Des. 2016;99:521–527.
  • Gu X, Zheng Y, Cheng Y, et al. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials. 2009;30(4):484–498.
  • Jhamb SK, Goyal A, Pandey A, et al. (2021). Degradation behaviour of magnesium alloy and its composite used as a biomaterial. In E3S Web of Conferences, Hyderabad,India. (Vol. 309). EDP Sciences.
  • Witte F, Feyerabend F, Maier P, et al. Biodegradable magnesium–hydroxyapatite metal matrix composites. Biomaterials. 2007;28(13):2163–2174.
  • Khalajabadi SZ, Kadir MRA, Izman S, et al. The effect of MgO on the biodegradation, physical properties and biocompatibility of a Mg/HA/MgO nanocomposite manufactured by powder metallurgy method. J Alloys Compd. 2016;655:266–280.
  • Staiger MP, Pietak AM, Huadmai J, et al. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006;27(9):1728–1734.
  • Hornberger H, Virtanen S, Boccaccini AR. Biomedical coatings on magnesium alloys–a review. Acta Biomater. 2012;8(7):2442–2455.
  • Campoccia D, Montanaro L, Arciola CR. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials. 2013;34(34):8533–8554.
  • Bergmann C, Lindner M, Zhang W, et al. 3D printing of bone substitute implants using calcium phosphate and bioactive glasses. J Eur Ceram Soc. 2010;30(12):2563–2567.
  • Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3D printing. Mater Today. 2013;16(12):496–504.
  • Gu X, Zheng Y, Cheng Y, et al. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials. 2009;30(4):484–498.
  • Zhang N, Wang Y, Xu W, et al. Poly (lactide-co-glycolide)/hydroxyapatite porous scaffold with microchannels for bone regeneration. Polymers. 2016;8(6):218.
  • Drynda A, Hassel T, Hoehn R, et al. Development and biocompatibility of a novel corrodible fluoride‐coated magnesium‐calcium alloy with improved degradation kinetics and adequate mechanical properties for cardiovascular applications. J Biomed Mater Res A. 2010;93(2):763–775.
  • Henderson HB, Ramaswamy V, Wilson-Heid AE, et al. Mechanical and degradation property improvement in a biocompatible Mg-Ca-Sr alloy by thermomechanical processing. J Mech Behav Biomed Mater. 2018;80:285–292.
  • Wang W, Han J, Yang X, et al. Novel biocompatible magnesium alloys design with nutrient alloying elements Si, Ca and Sr: structure and properties characterization. Mater Sci Eng B. 2016;214:26–36.
  • Cipriano AF, Sallee A, Tayoba M, et al. Cytocompatibility and early inflammatory response of human endothelial cells in direct culture with Mg-Zn-Sr alloys. Acta Biomater. 2017;48:499–520.
  • Cipriano AF, Sallee A, Guan RG, et al. Investigation of magnesium–zinc–calcium alloys and bone marrow derived mesenchymal stem cell response in direct culture. Acta Biomater. 2015;12:298–321.
  • Hong D, Saha P, Chou DT, et al. In vitro degradation and cytotoxicity response of Mg–4% Zn–0.5% Zr (ZK40) alloy as a potential biodegradable material. Acta Biomater. 2013;9(10):8534–8547.
  • Han J, Wan P, Ge Y, et al. Tailoring the degradation and biological response of a magnesium–strontium alloy Chen et al. 23 for potential bone substitute application. Mater Sci Eng C Mater Biol Appl. 2016;58:799–811.
  • Li J, Zhai D, Lv F, et al. Preparation of copper containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing. Acta Biomater. 2016;36:254–266.
  • Zhao C, Pan F, Zhang L, et al. Microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as-extruded Mg-Sr alloys. Mater Sci Eng C Mater Biol Appl. 2017;70:1081–1088.
  • Huang P, Li J, Zhang S, et al. Effects of lanthanum, cerium, and neodymium on the nuclei and mitochondria of hepatocytes: accumulation and oxidative damage. Environ Toxicol Pharmacol. 2011;31(1):25–32.
  • Bleavins K, Perone P, Naik M, et al. Stimulation of fibroblast proliferation by insoluble gadolinium salts. Biol Trace Elem Res. 2012;145(2):257–267.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.