128
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Ti2SC MAX phase enhanced wear characteristics of Al 2024 via friction stir processing

ORCID Icon, , &
Pages 249-267 | Accepted 02 Dec 2022, Published online: 16 Dec 2022

References

  • Polmear I, John DS, Nie JF, et al. Light alloys: metallurgy of the light metals. 5th. Chennai, India: Butterworth-Heinemann; 2017.
  • Campbell FC Manufacturing technology for aerospace structural materials [internet]. Manuf. Technol. Aerosp. Struct. Mater. 2006. Available from: http://linkinghub.elsevier.com/retrieve/pii/B9781856174954500020.
  • Miracle DB. Metal matrix composites – from science to technological significance. Compos Sci Technol. 2005;65(15–16):2526–2540.
  • Kandpal BC, Kumar J, Singh H. Manufacturing and technological challenges in Stir casting of metal matrix composites– a Review. Mater Today Proc. 2018;5(1):5–10. InternetAvailable from. DOI:10.1016/j.matpr.2017.11.046.
  • Liu ZY, Xiao BL, Wang WG, et al. Tensile strength and electrical conductivity of carbon nanotube reinforced aluminum matrix composites fabricated by powder metallurgy combined with friction stir processing. J Mater Sci Technol. 2014;30(7):649–655. (InternetAvailable from).
  • Hernández Rivera JL, Cruz Rivera JJ, Paz Del Ángel V, et al. Structural and morphological study of a 2024 Al-Al2O3 composite produced by mechanical alloying in high energy mill. Mater Des. 2012;37:96–101.
  • Patil NA, Pedapati SR, Mamat OB. A review on aluminium hybrid surface composite fabrication using friction stir processing. Arch Metall Mater. 2020;65:441–457.
  • Mathur V, B SRP, Patel G C M, et al. Reinforcement of titanium dioxide nanoparticles in aluminium alloy AA 5052 through friction stir process. Adv Mater Process Technol. 2019;5(2):329–337. DOI:10.1080/2374068X.2019.1585072
  • Murugarajan A, Srimath N. Effect of titanium carbide reinforcement on micro structure and wear properties of annealed AA6082 by friction stir processing. Adv Mater Process Technol. 2020;8:223–230.
  • Bharti S, Ghetiya N, Patel K. Fabrication of AA6061/Al2O3 surface composite by double pass friction stir processing and investigation on mechanical and wear properties. Adv Mater Process Technol. 2021;1–15. DOI:10.1080/2374068X.2021.1953923
  • Ma ZY. Friction stir processing technology: a review. Metall Mater Trans A. 2008;39(3):642–658. InternetAvailable from. http://link.springer.com/10.1007/s11661-007-9459-0.
  • Mishra RS, Ma ZY. Friction stir welding and processing. Mater Sci Eng R Rep. 2005;50(1–2):1–78.
  • Mazaheri Y, Heidarpour A, Jalilvand MM, et al. Effect of friction stir processing on the microhardness, wear and corrosion behavior of Al6061 and Al6061/SiO2 Nanocomposites. J Mater Eng Perform. 2019;28(8):4826–4837. DOI:10.1007/s11665-019-04260-3
  • Balakrishnan M, Dinaharan I, Palanivel R, et al. Influence of friction stir processing on microstructure and tensile behavior of AA6061/Al3Zr cast aluminum matrix composites. J Manuf Process. 2019;38:148–157. InternetAvailable from http://www.sciencedirect.com/science/article/pii/S1526612518313926
  • Patel V, Li W, Liu W, et al. Tailoring grain refinement through thickness in magnesium alloy via stationary shoulder friction stir processing and copper backing plate. J Materials Science and Engineering: A. 15 May 2020;784:139322. DOI:10.1016/j.msea.2020.139322
  • Sharma DK, Patel V, Badheka, V., et al. Different reinforcement strategies of hybrid surface composite AA6061/(B4c+mos2) produced by friction stir processing. J Materials Science and Engineering Technology. 10 November 2020. DOI:10.1002/mawe.202000130
  • Patel V, Badheka V, Li, W., et al. Hybrid friction stir processing with active cooling approach to enhance superplastic behavior of AA7075 aluminum alloy. J Archives of Civil and Mechanical Engineering. 2019;19(4):1368–1380. DOI:https://doi.org/10.1016/j.acme.2019.08.007
  • Patel V, Backer JD, Hindsefelt H., et al. High-speed friction stir welding in light weight battery trays for the EV industry. J Science and Technology of Welding and Joining. 2022;27(4). doi:https://doi.org/10.1080/13621718.2022.2045121.
  • Moustafa EB, Melaibari A, Alsoruji G, et al. Tribological and mechanical characteristics of AA5083 alloy reinforced by hybridising heavy ceramic particles Ta2C & VC with light GNP and Al2O3 nanoparticles. Ceram Int. 2022;48(4):4710–4721. DOI:10.1016/j.ceramint.2021.11.007
  • Vinothkumar H, Saravanakumar S, Ramesh C, et al. Investigation on Al2024 with Si3N4 and AlN composites using friction stir processing. Mater Today Proc. 2020;33:3089–3092.
  • Hosseinzadeh A, Yapici GG. High temperature characteristics of Al2024/SiC metal matrix composite fabricated by friction stir processing. Mater Sci Eng A. 2018;731:487–494.
  • Regev M, Spigarelli S. Study of mechanical, microstructural and thermal stability properties of friction stir processed aluminum 2024-T3 alloy. Kov Mater. 2020;57(04):229–236.
  • Regev M, Spigarelli S. Microstructure, thermal stability during creep and fractography study of friction-stir-processed AA2024-T3 aluminum alloy. J Mater Eng Perform. 2020;29(8):4872–4878. InternetAvailable from. DOI:https://doi.org/10.1007/s11665-020-04696-y.
  • Barsoum MW. MAX phases: properties of machinable ternary carbides and nitrides Barsoum, M W. In: MAX phases prop. mach. ternary carbides nitrides, 1. Weinheim: Wiley-VCH; 2013:421.
  • Zhou W, Liu L, Zhu J, et al. Facile synthesis of high-purity Ti2SC powders by spark plasma sintering technique. Ceram Int. 2017;43(12):9363–9368. (InternetAvailable from).
  • Zhao M-Q, Sedran M, Ling Z, et al. Synthesis of carbon/sulfur nanolaminates by electrochemical extraction of titanium from Ti2SC. Angew Chemie Int Ed. 2015;54(16):4810–4814. (InternetAvailable from).
  • Lu XL, Liu XB, Yu PC, et al. Effects of annealing on laser clad Ti2SC/CrS self-lubricating anti-wear composite coatings on Ti6Al4V alloy: microstructure and tribology. Tribol Int. 2016;101:356–363. InternetAvailable from DOI:http://dx.doi.org/10.1016/j.triboint.2016.05.004 .
  • Hoseini SM, Heidarpour A, Ghasemi S. On the mechanism of mechanochemical synthesis of Ti2SC from Ti/FeS2/C mixture. Adv Powder Technol. 2019;30(8):1672–1677.
  • Hosseini SM, Heidarpour A, Ghasemi S. Effects of ball milling sequences on the in-situ reactive synthesis of the Ti2SC MAX phase. Adv Appl Ceram. 2020;119(4):1–8. InternetAvailable from. DOI:10.1080/17436753.2020.1732637.
  • Heidarpour A, Mousavi ZS, Karimi S, et al. On the corrosion behavior and microstructural characterization of Al2024 and Al2024/Ti2SC MAX phase surface composite through friction stir processings. J Appl Electrochem. 2021;51(8):1123–1136. (InternetAvailable from).
  • Abraham SJ, Dinaharan I, Raja Selvam JD, et al. Microstructural characterization of vanadium particles reinforced AA6063 aluminum matrix composites via friction stir processing with improved tensile strength and appreciable ductility. Compos Commun. 2019;12:54–58.
  • Bharti S, Ghetiya ND, Patel KM. A review on manufacturing the surface composites by friction stir processing. Mater Manuf Process. 2021;36(2):135–170.
  • Patel V, Li W, Vairis A, et al. Recent development in friction stir processing as a solid-state grain refinement technique: microstructural evolution and property enhancement. Crit Rev Solid State and Mater Sci. 2019;44(5):378–426. DOI:10.1080/10408436.2018.1490251
  • Khodabakhshi F, Gerlich AP. Potentials and strategies of solid-state additive friction-stir manufacturing technology: a critical review. J Manuf Process. 2018;36:77–92. InternetAvailable from http://www.sciencedirect.com/science/article/pii/S1526612518309009
  • Khodabakhshi F, Nosko M, Gerlich AP. Effects of graphene nano-platelets (GNPs) on the microstructural characteristics and textural development of an Al-Mg alloy during friction-stir processing. Surf Coat Technol. 2018;335:288–305. InternetAvailable from http://www.sciencedirect.com/science/article/pii/S0257897217312768
  • Sharma V, Prakash U, BVMVM K. Surface composites by friction stir processing: a review. J Mater Process Technol. 2015;224:117–134. InternetAvailable from. DOI:http://dx.doi.org/10.1016/j.jmatprotec.2015.04.019
  • Salim RK, Khudair BH, Hashim FA. Effect of friction stir processing on (2024-T3) aluminum alloy. Int J Innov Res Sci Eng Technol. 2015;04(03):1822–1829.
  • Aydin H, Bayram A, Uǧuz A, et al. Tensile properties of friction stir welded joints of 2024 aluminum alloys in different heat-treated-state. Mater Des. 2009;30(6):2211–2221. DOI:10.1016/j.matdes.2008.08.034
  • Ghanbari D, Kasiri Asgarani M, Amini K, et al. Influence of heat treatment on mechanical properties and microstructure of the Al2024/SiC composite produced by multi–pass friction stir processing. Meas J Int Meas Confed. 2017;104:151–158. InternetAvailable from DOI:http://dx.doi.org/10.1016/j.measurement.2017.03.024.
  • Genevois C, Deschamps A, Denquin A, et al. Quantitative investigation of precipitation and mechanical behaviour for AA2024 friction stir welds. Acta Mater. 2005;53(8):2447–2458. DOI:10.1016/j.actamat.2005.02.007
  • Gangil N, Maheshwari S, Siddiquee AN, et al. Investigation on friction stir welding of hybrid composites fabricated on Al–Zn–Mg–Cu alloy through friction stir processing. J Mater Res Technol. 2019;8(5):3733–3740. DOI:10.1016/j.jmrt.2019.06.033
  • Lin YC, Xia YC, Jiang YQ, et al. Precipitation hardening of 2024-T3 aluminum alloy during creep aging. Mater Sci Eng A. 2013;565:420–429.
  • Nadammal N, S V K, Szpunar J, et al. Restoration mechanisms during the friction stir processing of aluminum alloys. Metall Mater Trans A Phys Metall Mater Sci. 2015;46(7):2823–2828. DOI:10.1007/s11661-015-2902-8
  • Bousquet E, Poulon-Quintin A, Puiggali M, et al. Relationship between microstructure, microhardness and corrosion sensitivity of an AA 2024-T3 friction stir welded joint. Corros Sci. 2011;53(9):3026–3034. DOI:10.1016/j.corsci.2011.05.049
  • Rana H, Badheka V, Kumar A, et al. Strategical parametric investigation on manufacturing of Al–Mg–Zn–Cu alloy surface composites using FSP. Mater Manuf Process. 2018;33(5):534–545. DOI:10.1080/10426914.2017.1364752
  • Chen L, Qi Y, Fei Y, et al. Enhanced mechanical properties and thermal conductivity for GNPs/Al2024 composites with in situ SiC nanorods. Met Mater Int. 2020;27(10):4263–4270. DOI:10.1007/s12540-020-00803-9
  • Heidarpour A, Ahmadifard S, Kazemi S. On the Al5083–Al2O3–TiO2 hybrid surface nanocomposite produced by friction stir processing. Prot Met Phys Chem Surfaces. 2018;54(3):409–415. InternetAvailable from. DOI:10.1134/S2070205118030279.
  • Heidarpour A, Mazaheri Y, Roknian M, et al. Development of Cu- TiO2 surface nanocomposite: effect of pass number on microstructure, mechanical properties, tribological and corrosion behavior. J Alloys Compd. 2019;783:886–897.
  • Ahmadifard S, Kazemi S, Heidarpour A. Production and characterization of A5083–Al2O3–TiO2 hybrid surface nanocomposite by friction stir processing. Proc Inst Mech Eng Part L J Mater Des Appl. 2018;232(4):287–293.
  • Mahmoud ERI, Takahashi M, Shibayanagi T, et al. Wear characteristics of surface-hybrid-MMCs layer fabricated on aluminum plate by friction stir processing wear. Wear. 2010;268(9–10):1111–1121. (InternetAvailable from).
  • Manochehrian A, Heidarpour A, Mazaheri Y, et al. On the surface reinforcing of A356 aluminum alloy by nanolayered Ti3AlC2 MAX phase via friction stir processing. Surf Coat Technol. 2019;377:124884.
  • Mahmoud ERI, Takahashi M, Shibayanagi T, et al. Fabrication of surface-hybrid-MMCs layer on aluminum plate by friction stir processing and its wear characteristics. Mater Trans. 2009;50(7):1824–1831. DOI:10.2320/matertrans.M2009092
  • Aruri D, Adepu K, Adepu K, et al. Wear and mechanical properties of 6061-T6 aluminum alloy surface hybrid composites [(SiC+gr) and (SiC+al2o3)] fabricated by friction stir processing. J Mater Res Technol. 2013;2(4):362–369. (InternetAvailable from).
  • Jamshidi R, Heidarpour A, Aghamohammadi H, et al. Improvement in the mechanical and tribological behavior of epoxy matrix with the inclusion of synthesized Ti3AlC2 MAX particles. J Compos Mater. 2019;53(26–27):3819–3827. DOI:10.1177/0021998319848140
  • Aghamohammadi H, Heidarpour A, Jamshidi R, et al. Tribological behavior of epoxy composites filled with nanodiamond and Ti 3 AlC 2 [sbnd]tic particles: a comparative study. Ceram Int. 2019;45(7):9106–9113. DOI:10.1016/j.ceramint.2019.01.249
  • Mazaheri Y, Bahiraei M, Mahdi M, et al. Improving mechanical and tribological performances of pure copper matrix surface composites reinforced by Ti 2 AlC MAX phase and MoS 2 nanoparticles. Mater Chem Phys. 2021;270:124790. InternetAvailable from DOI:10.1016/j.matchemphys.2021.124790.
  • Mazaheri Y, Karimzadeh F, Enayati MH. Tribological behavior of A356/Al2O3 surface nanocomposite prepared by friction stir processing. Metall Mater Trans A. 2014;45(4):2250–2259. InternetAvailable from. DOI:10.1007/s11661-013-2140-x.
  • Tailor S, Mohanty RM, Sharma VK, et al. Nanostructured 2024Al–SiCp composite coatings. Surf Eng. 2016;32(7):526–534. (InternetAvailable from).
  • Zahmatkesh B, Enayati MH, Karimzadeh F. Tribological and microstructural evaluation of friction stir processed Al2024 alloy. Mater Des. 2010;31(10):4891–4896. InternetAvailable from. DOI:http://dx.doi.org/10.1016/j.matdes.2010.04.054.
  • Xu Z, Xue B, Shi X, et al. Sliding speed and load dependence of tribological properties of Ti3SiC2/TiAl composite. Tribol Trans. 2015;58(1):87–96. DOI:10.1080/10402004.2014.951748
  • Yang R, Zhang Z, Zhao Y, et al. Effect of multi-pass friction stir processing on microstructure and mechanical properties of Al3Ti/A356 composites. Mater Charact. 2015;106:62–69. InternetAvailable from DOI:http://dx.doi.org/10.1016/j.matchar.2015.05.019.
  • Nazari M, Eskandari H, Khodabakhshi F. Production and characterization of an advanced AA6061-Graphene-TiB2 hybrid surface nanocomposite by multi-pass friction stir processing. Surf Coat Technol. 2019;377:124914.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.