126
Views
0
CrossRef citations to date
0
Altmetric
Research Article

STUDY OF STRUCTURAL AND TRANSPORT PROPERTIES OF CuFe2O4 SYNTHESISED VIA LOW COST SOLID STATE REACTION ROUTE

ORCID Icon, , , , &
Pages 484-496 | Accepted 08 Jan 2023, Published online: 29 Jan 2023

References

  • Jameel MAS, Calinescu I. Electromagnetic interference (EMI) shielding and microwave absorption properties of nickel ferrite NiFe2O4/PANI-PTSA nanocomposite. Adv Mater Process Technol. 2020;8:1312–1323.
  • Jansi Rani B, Saravanakumar B, Ravi G, et al. Structural, optical and magnetic properties of CuFe2O4 nanoparticles. J Mater Sci Mater Electron. 2018;29:1975–1984.
  • Thangjam B, Soibam I. Comparative study of structural, electrical, and magnetic behaviour of Ni-Cu-Zn nanoferrites sintered by microwave and conventional techniques. J Nanomater. 2017;2017:1–10.
  • Dong Y, Chui YS, Ma R, et al. One-pot scalable synthesis of Cu–CuFe2O4/graphene composites as anode materials for lithium-ion batteries with enhanced lithium storage properties. J Mater Chem A. 2014;2:13892–13897.
  • Zheng J, Lin Z, Liu W, et al. One-pot synthesis of CuFe2O4 magnetic nanocrystal clusters for highly specific separation of histidine-rich proteins. J Mater Chem B. 2014;2:6207–6214.
  • Marinca TF, Chicinaş I, Isnard O. Structural and magnetic properties of the copper ferrite obtained by reactive milling and heat treatment. Ceram Int. 2013;39(4):4179–4186.
  • Shilpa Amulya MA, Nagaswarupa HP, Anil Kumar MR, et al. Evaluation of bifunctional applications of CuFe2O4 nanoparticles synthesized by a sonochemical method. J Phys Chem Solids. 2021;148(109756). DOI:10.1016/j.jpcs.2020.109756
  • Rashad MM, Mohamed RM, Ibrahim MA, et al. Magnetic and catalytic properties of cubic copper ferrite nanopowders synthesized from secondary resources. Adv Powder Technol. 2012;23:315–323.
  • Chang TH. Ferrite materials and applications. In: Han MG, editor. Electromagnetic materials and devices. England: IntechOpen; 2019. p. 137–150.
  • Nasiri A, Nasiri M, Nouhi S, et al. Nanocrystalline copper ferrite: synthesis of different shapes through a new method and its photocatalyst application. J Mater Sci. 2017;28:2401–2406.
  • Nasiri A, Nasiri M, Nouhi S, et al. Nanocrystalline copper ferrite: synthesis of different shapes through a new method and its photocatalyst application. J Mater Sci Mater Electron. 2017;28:2401–2406.
  • Singh C, Bansal S, Kumar V, et al. Encrustation of cobalt doped copper ferrite nanoparticles on solid scaffold CNTs and their comparison with corresponding ferrite nanoparticles: a study of structural, optical, magnetic and photo catalytic properties. RSC Adv. 2015;5:39052–39061.
  • Lamani AR, Jayanna HS, Parameswara P, et al. Dielectric properties of polycrystalline Cu–Zn ferrites at microwave frequencies. J Alloys Compd. 2011;509(18):5692–5695.
  • Koferstein R, Walther T, Hesse D, et al. Crystallite-growth, phase transition, magnetic properties, and sintering behaviour of nano-CuFe2O4 powders prepared by a combustion-like process. J Solid State Chem. 2014;213:57–64.
  • Yoon D. Tetragonality of barium titanate powder for a ceramic capacitor application. J Ceram Proc Res. 2006;7(4):343.
  • Atsushi K, Gramsch SA, Yuki N, et al. 2015, “High-pressure behavior of cuprospinel CuFe2O4: influence of the Jahn-Teller effect on the spinel structure” American Mineralogist, vol. 100, no. 8–9 pp. 1752–1761. 10.2138/am-2015-5224
  • Williamson GK, Hall WH. X-ray line broadening from filed aluminium and Wolfram. Acta Metall. 1953;1(1):22–31.
  • Varol SF, Babür G, Çankaya G, et al. Synthesis of sol–gel derived nano-crystalline ZnO thin films as TCO window layer: effect of sol aging and boron. RSC Adv. 2014;4(100):56645–56653.
  • Aljarrah M, Salman FA. Simple analysis of impedance spectroscopy: review. J Inst Eng India Ser D. 2021;102:237–242.
  • Dutta S, Choudhary RNP, Sinha PK, et al. Microstructural studies of (PbLa)(ZRTI) O3 ceramics using complex impedance spectroscopy. J Appl Phys. 2004;96(3):1607–1613.
  • Mandal SK, Singh S, Dey P, et al. Frequency and temperature dependence of dielectric and electrical properties of TFe2O4 (T = Ni, Zn, Zn0.5Ni0.5) ferrite nanocrystals. J Alloys Compd. 2016;656:887–896.
  • Pradhan AK, Nath TK, Saha S. Impedance spectroscopy and electric modulus behavior of molybdenum doped cobalt–Zinc ferrite. Mater Res Express. 2017;4:076107.
  • Dev KM, Dutta A, Sinha TP. Impedance spectroscopy analysis of double perovskite Ho2NiTiO6. J Mater Sci. 2010;45:6757–6762.
  • Kumar Behera A, Mohanty NK, Satpathy SK, et al. Investigation of complex impedance and modulus properties of Nd doped 0.5(BiFeO3)-0.5(PbTiO3) multiferroic composites. Cent Eur J Phys. 2014;12(12):851–861.
  • Sutar BC, Choudhary RNP, Das PR. Dielectric and impedance spectroscopy of barium bismuth vanadate ferroelectrics. J Electron Mater. 2014;43:2621–2630.
  • Maso N, Yue XY, Goto T, et al. Frequency-dependent electrical properties of ferroelectric BaTi2O5 single crystal. J. 2011;109:024107.
  • Shoar Abouzari MR, Berkemeier F, Schmitz G, et al. On the physical interpretation of constant phase elements. Solid State Ion. 2009;180:922–927.
  • Sambasiva Rao K, Murali Krishna P, Madhava Prasad D, et al. Electrical, electromechanical and structural studies of lead potassium samarium niobate ceramics. J Alloys Compd. 2008;464(1–2):497–507.
  • Das PR, Parida BN, Padhee R, et al. Electrical properties of Na2Pb2R2W2Ti4V4O30 (R = Dy, Pr) ceramics. J Adv Ceram. 2013;2:112–118.
  • Ahmed S, Kumar Barik S. Enhanced electric and magnetic properties of (BiLi)1/2(fe2/3W1/3)O3 multiferroic as compared to BiFeo3. Ceram Int. 2016;42(5):5659–5667.
  • Sambasiva Rao K, Krishna PM, Madhava Prasad D, et al. Modulus spectroscopy of lead potassium titanium niobate (Pb0.95K0.1Ti0.25Nb1.8O6) ceramics. J Mater Sci. 2007;42:4801–4809.
  • Sundar Das A, Biswas D. Investigation of AC conductivity mechanism and dielectric relaxation of semiconducting neodymium-vanadate nanocomposites: temperature and frequency dependency mater. Res Express. 2019;6:075206.
  • Shrabanee Sen RNPC, Choudhary RNP. Impedance studies of Sr modified BaZr0.05Ti0.95O3 ceramics. Mater Chem Phys. 2004;87(2–3):256–263.
  • Biswal L, Das PR, Behera B, et al. Structural, dielectric and conductivity studies of Na2Pb2La2W2Ti4Nb4O30 ferroelectric ceramic. J Electroceram. 2012;29:204–210.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.