475
Views
1
CrossRef citations to date
0
Altmetric
Review Article

A comprehensive review on underwater welding: methods, property evaluations and challenges

& ORCID Icon
Pages 923-959 | Accepted 20 Feb 2023, Published online: 05 Mar 2023

References

  • Sahoo A, Tripathy S. Development in plasma arc welding process: a review. Mater Today Proc. 2021;41:363–368.
  • David SA, DebRoy T. Current issues and problems in welding science. Science. 1992;257(5069):497–502.
  • Padmanaban RV, Kishore VR, Balusamy V. Numerical simulation of temperature distribution and material flow during friction stir welding of dissimilar aluminium alloys. Procedia Eng. 2014;1(97):854–863.
  • Reis RP, Souza D, Scotti A. Models to describe plasma jet, arc trajectory and arc blow formation in arc welding. Weld world. 2011;55(3):24–32.
  • Padmanaban R, Balusamy V, Vaira Vignesh R. Effect of friction stir welding process parameters on the tensile strength of dissimilar aluminum alloy AA2024‐T3 and AA7075‐T6 joints. Materwiss Werksttech. 2020;51(1):17–27.
  • Abilash M, Padmanabham G, Padmanaban R, et al. The effect of welding direction in CO2 LASER-MIG hybrid welding of mild steel plates. InIop Conf Ser: Mater Sci Eng. 2016;149(1):012031. DOI:10.1088/1757-899X/149/1/012031
  • Ashidh K, Santha Kumari A, Sumesh A, et al. Influence of stick-slip effect on gas metal arc welding. Appl Mech Mater. 2015;813:438–445.
  • Elleman AJ, Smith ND. A new type of primer for resistance welding trans. Inst Met Finish. 1954;31(1):351–366.
  • Łabanowski J. Development of under-water welding techniques. Weld Int. 2011;25(12):933–937.
  • Omajene JE, Martikainen J, Kah P, et al. Fundamental difficulties associated with underwater wet welding. Int J Eng Res Appl. 2014 Jun;4(6):26–31.
  • Majumdar JD. Underwater welding-present status and future scope. J Nav Archit Mar Eng. 2006;3(1):38–47.
  • Chhaniyara A. Underwater welding. Int J Mech Prod Eng Res Dev. 2014;4(1):81–90.
  • Wang J, Sun Q, Jiang Y, et al. Analysis and improvement of underwater wet welding process stability with static mechanical constraint support. J Manuf Process. 2018;34:238–250.
  • Guo N, Du Y, Feng J, et al. Study of underwater wet welding stability using an X-ray transmission method. J Mater Process Technol. 2015;225:133–138.
  • Verma K, Garg HK. Underwater welding-Recent trends and future scope. Int J Emerg Technol. 2012;3(2):115–120.
  • Tomków J, Janeczek A, Rogalski G, et al. Underwater local cavity welding of S460N steel. Materials. 2020;13(23):5535. DOI:10.3390/ma13235535
  • Brown RT, Masubuchi K. Fundamental research on underwater welding. Weld J. 1975;54(6):178s–188s.
  • Adiban SV, Ramu M. Study on the effect of weld defects on fatigue life of structures. Mater Today Proc. 2018;5(9):17114–17124.
  • Thekkuden DT, Santhakumari A, Sumesh A, et al. Instant detection of porosity in gas metal arc welding by using probability density distribution and control chart. Int J Adv Manuf Technol. 2018;95(9):4583–4606. DOI:10.1007/s00170-017-1484-6
  • Chandra BR, Arul S, Sellamuthu R. Effect of electrode diameter and input current on gas tungsten arc welding heat distribution parameters. Procedia Mater Sci. 2014;5:2369–2375.
  • Łabanowski J F, Fydrych D, Rogalski G. Underwater welding–a review. Adv Mater. 2008;8(3):11–22.
  • Rowe M, Liu S. Recent developments in underwater wet welding. Sci Technol Weld Join. 2001;6(6):387–396.
  • Fydrych D, Kozak T. Underwater welded joint properties investigation. Adv Mater Sci. 2009;9(4):4.
  • Tsai CL, Ozaki H, Moore AP. Weld Res Counc Bull. 1977. Report No: MITSG 77-9. Index No: 77-309-Nvf. ( MITSG 77-9).
  • Brown AJ, Brown RT, Tsai CL, et al. Report on fundamental research on underwater welding.1974.
  • Masubuchi K. Review of underwater welding technology. InOceans 81. 1981;1:649–651.
  • Vashishtha P, Wattal R, Pandey S, et al. Problems encountered in underwater welding and remedies-a review. Mater Today Proc. 2022;64:1433–1439.
  • Zhang Y, Jia C, Zhao B, et al. Heat input and metal transfer influences on the weld geometry and microstructure during underwater wet FCAW. J Mater Process Technol. 2016;1(238):373–382.
  • Gao W, Wang D, Cheng F, et al. Microstructural and mechanical performance of underwater wet welded S355 steel. J Mater Process Technol. 2016;1(238):333–340.
  • Chen H, Guo N, Zhang X, et al. Effect of water flow on the microstructure, mechanical performance, and cracking susceptibility of underwater wet welded Q235 and E40 steel. J Mater Process Technol. 2020;277:116435.
  • Verma RK, Khan MI. Underwater welding parameters-a review. Transformation. 2015;3(4):5.
  • Sharma A, Arora N, Mishra BK. Statistical modeling of deposition rate in twin-wire submerged arc welding. Proc Inst Mech Eng Part B. 2009;223(7):851–863.
  • Yang LJ, Chandel RS, Bibby MJ. The effects of process variables on the bead width of submerged-arc weld deposits. Journal of Materials Processing Technology. 1992;29(1–3):133–144.
  • Kumar V Use of response surface modeling in prediction and control of flux consumption in submerged arc weld deposits. In Proceedings of the World Congress on Engineering and Computer Science 2011, San Francisco, USA (Vol. 2).
  • Bakrewal A, Fernandes AA, Jadhav K, et al. A recent progress in performance and property improvement in underwater welding.
  • Shamsuddoha M, Islam MM, Aravinthan T, et al. Effectiveness of using fibre-reinforced polymer composites for underwater steel pipeline repairs. Compos Struct. 2013;1(100):40–54.
  • de Rosa Oliveira F, Rodrigues Soares W, Queiroz Bracarense A. Study correlating the bubble phenomenon and electrical signals in underwater wet welding with covered electrodes. Weld Int. 2015;29(5):363–371.
  • Oliveira FD, Soares WR, Bracarense AQ. Correlating study of bubble phenomenon and electrical signals in underwater wet welding with covered electrodes. Soldag Inspeção 2013;18(2):092–101.
  • Wang J, Sun Q, Zhang S, et al. Characterization of the underwater welding arc bubble through a visual sensing method. J Mater Process Technol. 2018;251:95–108.
  • Li HL, Liu D, Guo N, et al. The effect of alumino-thermic addition on underwater wet welding process stability. J Mater Process Technol. 2017;245:149–156.
  • Wang J, Sun Q, Pan Z, et al. Effects of welding speed on bubble dynamics and process stability in mechanical constraint-assisted underwater wet welding of steel sheets. J Mater Process Technol. 2019;264:389–401.
  • Chen H, Guo N, Huang L, et al. Effects of arc bubble behaviors and characteristics on droplet transfer in underwater wet welding using in-situ imaging method. Mater Des. 2019;170:107696.
  • Kang SK, Na SJ. A mechanism of spatter production from the viewpoint of the integral of specific current action. Weld J. 2005;84:12.
  • Seo DW, Jeon YB, Lim JK. Effect of electric weld current on spatter reduction in spot welding process. Key Eng Mater. 2004;1623–1628. DOI:10.4028/scientific.net/KEM.261-263.1623
  • Bunaziv I, Olden V, Akselsen OM. Metallurgical aspects in the welding of clad pipelines—a global outlook. Appl Sci. 2019;9(15):3118.
  • Kang MJ, Kim Y, Ahn S, et al. Spatter rate estimation in the short circuit transfer region of GMAW. Weld J. 2003;82(9):238–247.
  • Jenkins NT, Eagar TW. Fume formation from spatter oxidation during arc welding. Sci Technol Weld Join. 2005;10(5):537–543.
  • Baune E, Bonnet C, Liu S. Assessing metal transfer stability and spatter severity in flux cored arc welding. Sci Technol Weld Join. 2001;6(3):139–148.
  • Molleda F, Mora J, Molleda JR, et al. The importance of spatter formed in shielded metal arc welding. Mater Charact. 2007;58(10):936–940. DOI:10.1016/j.matchar.2006.09.011
  • Lienert T, Siewert T, Babu S, et al. 2011.
  • Kobayashi T, Sugiyama T. The effect of shielding gas composition on the characteristics of stainless steel weld metal. IIW Doc. 1982. XIZ-E-33–82. XII-B-25–82.
  • Liao MT, Chen WJ. A comparison of gas metal arc welding with flux-cored wires and solid wires using shielding gas. Int J Adv Manuf Technol. 1999;15(1):49–53.
  • Sato M, Suda K, Nagasaki H. How to weld using flux-cored wires. Weld Int. 1997;11(4):264–272.
  • Zaruba LL. On spatter of CO2 welding. Auto Weld. 1974;8:46–51.
  • Liu S, Olson DL, Ibarra S. Electrode formulation to reduce weld metal hydrogen and porosity. New York: American Society of Mechanical Engineers; 1994.
  • Ersoy U, Hu SJ, Kannatey-Asibu E. Observation of arc start instability and spatter generation in GMAW Weld. J NEW YORK. 2008;87(2):51.
  • Heider A, Sollinger J, Abt F, et al. High-speed X-ray analysis of spatter formation in laser welding of copper. Phys Procedia. 2013;41:112–118.
  • Guo N, Xu C, Guo W, et al. Characterization of spatter in underwater wet welding by X-ray transmission method. Mater Des. 2015;85:156–161.
  • Law DW, Nicholls P, Christodoulou C. Residual protection of steel following suspension of impressed current cathodic protection system on a wharf structure. Constr Build Mater. 2019;210:48–55.
  • Aleksić V, Milović L, Blačić I, et al. Effect of LCF on behavior and microstructure of microalloyed HSLA steel and its simulated CGHAZ. Eng Fail Anal. 2019;104:1094–1106.
  • Fydrych D, Labanowski J, Tomków J, et al. Cold cracking of underwater wet welded S355G10+ N high strength steel. Adv Mater Sci. 2015;15(3):48–56. DOI:10.1515/adms-2015-0015
  • Tomków J, Fydrych D, Rogalski G, et al. Temper bead welding of S460N steel in wet welding conditions. Adv Mater Sci. 2018;18(3):5–14. DOI:10.1515/adms-2017-0036
  • Górka J. Assessment of the weldability of T-welded joints in 10 mm thick TMCP steel using laser beam. Materials. 2018;11(7):1192.
  • Skowrońska B, Chmielewski T, Golański D, et al. Weldability of S700MC steel welded with the hybrid plasma+ MAG method. Manuf Rev. 2020;7:4.
  • Tomków J, Janeczek A. Underwater in situ local heat treatment by additional stitches for improving the weldability of steel. Appl Sci. 2020;10(5):1823.
  • Tomków J, Landowski M, Fydrych D, et al. Underwater wet welding of S1300 ultra-high strength steel. Mar Struct. 2022;J;1(81):103120.
  • Schaupp T, Rhode M, Yahyaoui H, et al. Hydrogen-assisted cracking in GMA welding of high-strength structural steels using the modified spray arc process. Weld world. 2020;64(12):1997–2009.
  • Tsai CL, Masubuchi K. Mechanisms of rapid cooling in underwater welding. Appl Ocean Res. 1979;1(2):99–110.
  • Tsai CL, Masubuchi K. Mechanisms of rapid cooling and their design considerations in underwater welding. J Pet Technol. 1980;32(10):1–825.
  • Zhang HT, Dai XY, Feng JC, et al. Preliminary investigation on real-time induction heating-assisted underwater wet welding. Weld J. 2015;1:8–15.
  • Szelagowski P, Ibarra S, Ohliger A, et al. In-situ post-weld heat treatment of wet welds. Proc Annu Offshore Technol Conf. 1992;301–308.
  • Karlsson L, Keehan E, Andren HO, et al. Development of high strength steel weld metals–. proceedings. Eurojoin. 2004;5:13–14.
  • Wang W, Liu S. Alloying and microstructural management in developing SMAW electrodes for HSLA-100 steel. Weld J New York. 2002;81(7):132–S.
  • Koo JY, Luton MJ, Bangaru NV, et al. Metallurgical design of ultra high-strength steels for gas pipelines. Int J Offshore Polar Eng. 2004;14(01):002.
  • Lord M. Interpass temperature and the welding of strong steels. Weld World. 1998;41(5):452–459.
  • Keehan E, Zachrisson J, Karlsson L. Influence of cooling rate on microstructure and properties of high strength steel weld metal. Sci Technol Weld Join. 2010;15(3):233–238.
  • Tomków J, Rogalski G, Fydrych D, et al. Improvement of S355G10+ N steel weldability in water environment by temper bead welding. J Mater Process Technol. 2018;262:372–381.
  • Chen H, Guo N, Shi X, et al. Effect of hydrostatic pressure on protective bubble characteristic and weld quality in underwater flux-cored wire wet welding. J Mater Process Technol. 2018;259:159–168.
  • Chen H, Guo N, Shi X, et al. Effect of water flow on the arc stability and metal transfer in underwater flux-cored wet welding. J Manuf Processes. 2018;1(31):103–115.
  • Zhao B, Chen J, Jia C, et al. Numerical analysis of molten pool behavior during underwater wet FCAW process. J Manuf Processes. 2018;32:538–552.
  • Yurioka N, Horii Y. Recent developments in repair welding technologies in Japan. Sci Technol Weld Join. 2006;11(3):255–264.
  • Guo N, Liu D, Guo W, et al. Effect of Ni on microstructure and mechanical properties of underwater wet welding joint. Mater Des. 2015;77:25–31.
  • Sun QJ, Cheng WQ, Liu YB, et al. Microstructure and mechanical properties of ultrasonic assisted underwater wet welding joints. Mater Des. 2016;103:63–70.
  • Wang J, Sun Q, Wu L, et al. Effect of ultrasonic vibration on microstructural evolution and mechanical properties of underwater wet welding joint. J Mater Process Technol. 2017;246:185–197.
  • Pessoa EC, Bracarense AQ, Zica EM, et al. Porosity variation along multipass underwater wet welds and its influence on mechanical properties. J Mater Process Technol. 2006;179(1–3):239–243. DOI:10.1016/j.jmatprotec.2006.03.071
  • West TC, Mitchell G, Lindberg E Wet welding electrode evaluation for ship repair.1990.
  • Sanchez-Osio A, Liu S, Olson DL, et al. Designing shielded metal arc consumables for underwater wet welding in offshore applications. J Offshore Mech Arct Eng. 1995;117(3):212–220. DOI:10.1115/1.2827092
  • Malakondaiah G, Srinivas M, Rao PR. Ultrahigh-strength low-alloy steels with enhanced fracture toughness. Prog Mater Sci. 1997;42(1–4):209–242.
  • Eghbali B, Abdollah-Zadeh A. Deformation-induced ferrite transformation in a low carbon Nb–Ti microalloyed steel. Mater Des. 2007;28(3):1021–1026.
  • Keehan E, Andrén HO, Karlsson L, et al. Microstructural and mechanical effects of nickel and manganese on high strength steel weld metals. Trends Weld Res. 2002;695–700.
  • Fydrych D, Łabanowski J, Rogalski G. Weldability of high strength steels in wet welding conditions. Pol Marit Res. 2013;20(2 (78)):67–73.
  • Rowe MD, Liu S, Reynolds TJ. The effect of ferro-alloy additions and depth on the quality of underwater wet welds. Weld J New York. 2002;81(8):156-S-166–s.
  • Pessoa EC, Liu S. The state of the art of underwater wet welding practice: part 2. Weld J. 2021;100(5):171–182.
  • Santos VR, Monteiro MJ, Rizzo FC, et al. Development of an oxyrutile electrode for wet welding. Weld J. 2012;91(12):319–328.
  • Cui L, Yang X, Wang D, et al. Experimental study of friction taper plug welding for low alloy structure steel: welding process, defects, microstructures and mechanical properties. Mater Des. 2014;62:271–281.
  • Ibarra S, Grubbs EC, Olson DL. Metallurgical aspect of underwater welding. JOM. 1988;40(12):8–10.
  • Liu D, Guo N, Xu C, et al. Effects of Mo, Ti and B on microstructure and mechanical properties of underwater wet welding joints. J Mater Eng Perform. 2017;26(5):2350–2358.
  • Ersoy E. Recent trends and development of underwater welding. Int j eng res appl. 2020;4(1):36–44.
  • Anand A, Khajuria A. Welding processes in marine application: a review. Int J Mech Eng Robot Res. 2015;2(1):215–225.
  • Lv XM, Liu YF, Gao HB, et al. Design of underwater welding robot used in nuclear plant Key Eng Mater. 2014;620:484–489. DOI:10.4028/scientific.net/KEM.620.484
  • Surojo E, Putri ED, Budiana EP. Recent developments on underwater welding of metallic material. Procedia Struct Integr. 2020;27:14–21.
  • Barnabas SG, Rajakarunakaran S, Pandian GS, et al. Review on enhancement techniques necessary for the improvement of underwater welding. Mater Today Proc. 2021;45:1191–1195.
  • Fydrych D, Świerczyńska A, Rogalski G. Effect of underwater wet welding conditions on the diffusible hydrogen content in deposited metal. Methods. 2015;11(12):47–52.
  • Klett J, Hecht-Linowitzki V, Grünzel O, et al. Effect of the water depth on the hydrogen content in SMAW wet welded joints. SN Appl Sci. 2020;2(7):1–14. DOI:10.1007/s42452-020-3066-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.