61
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Corrosion Behaviour of NiCr/TiO2 coated 316L stainless steel before and after thermal shock exposure

ORCID Icon, &
Pages 1574-1592 | Accepted 29 Mar 2023, Published online: 10 Apr 2023

References

  • Becker WT, Shipley RJ. ASM handbook volume 11: failure analysis and prevention. Ohio: ASM International; 2002.
  • Roberge PR. Handbook of corrosion engineering library of congress. New York: McGraw-Hill; 1999.
  • Perumal KE. Corrosion failures in process industries in India: statistical analysis and typical case studies. Corros Rev. 2011;27(Supplement):37–60.
  • Khatak HS, Raj B. Corrosion of austenitic stainless steels, first. Cambridge: Woodhead Publishing Limited; 2002.
  • Rajesh KVD, Shaik AM, Buddi T. Wear and corrosion analysis on maraging steel MS1 and stainless steel 316L developed by direct metal laser sintering process. Adv Mater Process Technol. 2022;8(sup3):1135–1150.
  • Li DG, Wang JD, Chen DR, et al. Influence of molybdenum on tribo-corrosion behavior of 316L stainless steel in artificial saliva. J Bio- Tribo-Corros. 2015;1(2):1–9.
  • da Costa at, de Oliveira Mcl, Antunes RA. Interplay between the composition of the passive film and the corrosion resistance of citric acid-passivated AISI 316L stainless steel. Surf Interface Anal. 2021;53(3):374–384.
  • Cao L, Qin Z, Deng Y, et al. Effect of passive film on cavitation corrosion behavior of 316L stainless steel. Int J Electrochem Sci. 2020;15:628–638.
  • Kumar K, Bhadauria SS, Singh AP. Effect of strain loading on stress corrosion cracking susceptibility of 316L stainless steel in boiling MgCl2 solution. J Bio- Tribo-Corros. 2021;7(3):123.
  • Lorang G, Da Cunha Belo M, Simões AMP, et al. Chemical composition of passive films on AISI 304 stainless steel. J Electrochem Soc. 1994;141(12):3347–3356.
  • Zhang B, Wang J, Wu B, et al. Unmasking chloride attack on the passive film of metals. Nat Commun. 2018;9(1):1–9. DOI:10.1038/s41467-018-04942-x
  • Parangusan H, Bhadra J, Al-Thani N. A review of passivity breakdown on metal surfaces: influence of chloride- and sulfide-ion concentrations, temperature, and pH. Emerg Mater. 2021;4(5):1187–1203.
  • Nazarov A, Vivier V, Vucko F, et al. Effect of tensile stress on the passivity breakdown and repassivation of AISI 304 stainless steel: a scanning kelvin probe and scanning electrochemical microscopy study. J Electrochem Soc. 2019;166(11):C3207–3219.
  • Pal S. Role of residual stresses induced by U-bending on stress corrosion cracking susceptibility of F304 stainless steel. Adv Mater Process Technol. 2023;1–14. DOI:10.1080/2374068X.2023.2165991
  • Kumar K, Bhadauria SS, Singh AP. Finite element analysis of crack initiation and growth in a rectangular plate with pre-existing pits. In: Materials Today: Proceedings. Elsevier Ltd, Material TECH 2021, NIT Raipur INDIA, 2021. pp 3050–3054
  • Azzi M, Amirault P, Paquette M, et al. Corrosion performance and mechanical stability of 316L/DLC coating system: role of interlayers. Surf Coat Technol. 2010;204(24):3986–3994. DOI:10.1016/j.surfcoat.2010.05.004
  • Masalski J, Gluszek J, Zabrzeski J, et al. Improvement in corrosion resistance of the 3161 stainless steel by means of Al2O3 coatings deposited by the sol-gel method. Thin Solid Films. 1999;349(1–2):186–190. DOI:10.1016/S0040-6090(99)00230-8
  • Souza Filho Ea D, Pieretti EF, Bento RT, et al. Effect of nitrogen-doping on the surface chemistry and corrosion stability of TiO2 films. J Mater Res Technol. 2020;9(1):922–934.
  • Sahnesarayi MK, Sarpoolaky H, Rastegari S. Effect of heat treatment temperature on the performance of nano-TiO2 coating in protecting 316L stainless steel against corrosion under UV illumination and dark conditions. Surf Coat Technol. 2014;258:861–870.
  • Naghibi S. Application of Taguchi method for characterization of corrosion behavior of TiO2 coating prepared by sol-gel dipping technique. Int J Appl Ceram Technol. 2013;10(5):1–10.
  • Liu C, Lin G, Yang D, et al. In vitro corrosion behavior of multilayered Ti/TiN coating on biomedical AISI 316L stainless steel. Surf Coat Technol. 2006;200(12–13):4011–4016.
  • Guo S, Xu D, Liang Y, et al. Corrosion characterization of ZrO2 and TiO2 ceramic coatings via air plasma spraying on 316 stainless steel in oxygenated sub- and supercritical water. J Supercrit Fluids. 2020;157:104716.
  • Xu D, Guo S, Ma Z, et al. Corrosion characteristic comparisons of ZrO2-, TiO2-coated and uncoated 316 stainless steel samples in supercritical water oxidation of municipal sludge. J Supercrit Fluids. 2020;155:104663.
  • Wang Y, Gao F, Yang J, et al. Comparative study on corrosion characteristics of Al2O3/316L and TiO2/316L stainless steel in supercritical water. Int J Hydrogen Energy. 2017;42(31):19836–19842. DOI:10.1016/j.ijhydene.2017.06.129
  • Omar NI, Selvami S, Kaisho M, et al. Deposition of titanium dioxide coating by the cold-spray process on annealed stainless steel substrate. Coatings. 2020;10(10):1–13. DOI:https://doi.org/10.3390/coatings10100991
  • Bozorgtabar M, Rahimipour M, Salehi M. Novel photocatalytic TiO2 coatings produced by HVOF thermal spraying process. Mater Lett. 2010;64(10):1173–1175.
  • Shen GX, Chen YC, Lin CJ. Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol–gel method. Thin Solid Films. 2005;489(1–2):130–136.
  • Barati N, Sani MAF, Ghasemi H, et al. Preparation of uniform TiO2 nanostructure film on 316L stainless steel by sol–gel dip coating. Appl Surf Sci. 2009;255(20):8328–8333. DOI:10.1016/j.apsusc.2009.05.048
  • Padhy N, Kamal S, Chandra R, et al. Corrosion performance of TiO2 coated type 304L stainless steel in nitric acid medium. Surf Coat Technol. 2010;204(16–17):2782–2788. DOI:10.1016/j.surfcoat.2010.02.047
  • Fauchais P. Understanding plasma spraying. J Phys D Appl Phys. 2004;37(9):R86–108.
  • Shin IH, Koo JM, Seok CS, et al. Estimation of spallation life of thermal barrier coating of gas turbine blade by thermal fatigue test. Surf Coat Technol. 2011;205:S157–160.
  • Zhang WW, Li GR, Zhang Q, et al. Comprehensive damage evaluation of localized spallation of thermal barrier coatings. J Adv Ceram. 2017;6(3):230–239.
  • Wang Y, Tian W, Yang Y. Thermal shock behavior of nanostructured and conventional Al2O3/13 wt%TiO2 coatings fabricated by plasma spraying. Surf Coat Technol. 2007;201(18):7746–7754.
  • Zhai CS, Wang J, Li F, et al. Thermal shock properties and failure mechanism of plasma sprayed Al2O3/TiO2 nanocomposite coatings. Ceram Int. 2005;31(6):817–824. DOI:10.1016/j.ceramint.2004.09.009
  • Li M, Wei KX, Wei W, et al. Thermal shock behaviours of atmospheric plasma sprayed NiCrAlY/Al2O3–20%TiO2 gradient coating on Cu–Be alloy. Surf Eng. 2020;36(10):1113–1120. DOI:10.1080/02670844.2020.1766866
  • An G, Li W, Feng L, et al. Isothermal oxidation and TGO growth behaviors of YAG/YSZ double-ceramic-layer thermal barrier coatings. Ceram Int. 2021;47(17):24320–24330. DOI:10.1016/j.ceramint.2021.05.144
  • Jiang C, Lu J, Liu W, et al. Corrosion resistance of plasma-sprayed Fe-based coatings by using core-shell structure powders. J Mater Res Technol. 2020;9(6):12273–12280. DOI:10.1016/j.jmrt.2020.08.081
  • Li Z, Farhat Z. Effects of ti content and annealing on corrosion resistance of electroless Ni–P–Ti composite coatings. J Bio- Tribo-Corrosion. 2021;7(3):97.
  • Doleker KM, Ozgurluk Y, Parlakyigit AS, et al. Oxidation behavior of NiCr/YSZ thermal barrier coatings (TBCs). Open Chem. 2018;16(1):876–881. DOI:10.1515/chem-2018-0096
  • Dai J, Yang J, Zhuge L, et al. Al2O3–TiO2 composite coatings with enhanced anticorrosion properties for 316L stainless steel. Mater Corros. 2020;71(9):1512–1520.
  • Zhang X, Li S, Sun W, et al. Study on the corrosion behavior of copper coupled with TiO2 with different crystal structures. Corros Sci. 2021;183:109352.
  • Choi H, Yoon B, Kim H, et al. Isothermal oxidation of air plasma spray NiCrAlY bond coatings. Surf Coat Technol. 2002;150(2–3):297–308.
  • Ren Y, Qian Y, Xu J, et al. Oxidation and cracking/spallation resistance of ZrB2–SiC–TaSi2–Si coating on siliconized graphite at 1500 °C in air. Ceram Int. 2020;46(5):6254–6261. DOI:10.1016/j.ceramint.2019.11.095
  • Zhu W, Zhang ZB, Yang L, et al. Spallation of thermal barrier coatings with real thermally grown oxide morphology under thermal stress. Mater Des. 2018;146:180–193.
  • Sayman O, Sen F, Celik E, et al. Thermal stress analysis of Wc–Co/Cr–Ni multilayer coatings on 316L steel substrate during cooling process. Mater Des. 2009;30(3):770–774.
  • Tong T, Li J, Chen Q, et al. Ultrafast laser micromachining of thermal sprayed coatings for microheaters: design, fabrication and characterization. Sens Actuators A Phys. 2004;114(1):102–111. DOI:10.1016/j.sna.2004.02.012
  • Dundar I, Mere A, Mikli V, et al. Thickness effect on photocatalytic activity of TiO2 thin films fabricated by ultrasonic spray pyrolysis. Catalysts. 2020;10(9):1–13. DOI:https://doi.org/10.3390/catal10091058
  • Luo H, Su H, Ying G, et al. Effect of cold deformation on the electrochemical behaviour of 304L stainless steel in contaminated sulfuric acid environment. Appl Surf Sci. 2017;425:628–638.
  • Luo H, Dong C, Xiao K, et al. The passive behaviour of ferritic stainless steel containing alloyed tin in acidic media. RSC Adv. 2016;6(12):9940–9949.
  • Biesinger MC, Payne BP. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci. 2011;257(7):2717–2730.
  • Wang Z, Zhou ZQ, Zhang L, et al. Effect of pH on the electrochemical behaviour and passive film composition of 316L stainless steel. Acta Metall Sin (English Lett). 2019;32(5):585–598. DOI:10.1007/s40195-018-0794-5
  • Luo H, Su H, Dong C, et al. Passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solution. Appl Surf Sci. 2017;400:38–48.
  • Wang S, Lian JS, Zheng WT, et al. Photocatalytic property of Fe doped anatase and rutile TiO2 nanocrystal particles prepared by sol-gel technique. Appl Surf Sci. 2012;263:260–265.
  • Krishnakumar M, Saravanan R, Narayanan V. Effect of Bio-fluid on the corrosion properties of tungsten surface alloyed under nitrogen on austenitic stainless steel. J Bio- Tribo-Corrosion. 2020;6(3):77.
  • Xu Q, Jiang D, Zhou J, et al. Enhanced corrosion resistance of laser additive manufactured 316L stainless steel by ultrasonic surface rolling process. Surf Coat Technol. 2023;454:129187.
  • Pathote D, Jaiswal D, Singh V, et al. Electrochemical corrosion behavior of tantalum coated 316L stainless steel by D.C. Magnetron sputtering for orthopedic applications. Appl Surf Sci Adv. 2023;13:100365.
  • Singh A, Singh G, Chawla V. Influence of post coating heat treatment on microstructural, mechanical and electrochemical corrosion behaviour of vacuum plasma sprayed reinforced hydroxyapatite coatings. J Mech Behav Biomed Mater. 2018;85:20–36.
  • Al-Daraghmeh MY, Hayajneh MT, Almomani MA. Corrosion resistance of TiO2-ZrO2 nanocomposite thin films spin coated on AISI 304 stainless steel in 3.5 wt%. NaCl Solution Mater Res. 2019;22(5). DOI:10.1590/1980-5373-mr-2019-0014
  • Ćurković L, Ćurković HO, Salopek S, et al. Enhancement of corrosion protection of AISI 304 stainless steel by nanostructured sol-gel TiO2 films. Corros Sci. 2013;77:176–184.
  • Sengupta S, Murmu M, Murmu NC, et al. Adsorption of redox-active Schiff bases and corrosion inhibiting property for mild steel in 1 molL−1 H2SO4: experimental analysis supported by ab initio DFT, DFTB and molecular dynamics simulation approach. J Mol Liq. 2021;326:115215.
  • Murmu M, Saha SK, Murmu NC, et al. Amine cured double Schiff base epoxy as efficient anticorrosive coating materials for protection of mild steel in 3.5%. NaCl Medium J Mol Liq. 2019;278:521–535.
  • Aslam R, Mobin M, Huda, et al. Proline nitrate ionic liquid as high temperature acid corrosion inhibitor for mild steel: experimental and molecular-level insights. J Ind Eng Chem. 2021;100:333–350.
  • Nie J, Wei L, Jiang Y, et al. Corrosion mechanism of additively manufactured 316L stainless steel in 3.5 wt.% NaCl solution. Mater Today Commun. 2021;26:101648.
  • Ziadi I, Alves MM, Taryba M, et al. Microbiologically influenced corrosion mechanism of 304L stainless steel in treated urban wastewater and protective effect of silane-TiO2 coating. Bioelectrochemistry. 2020;132:107413.
  • Shoar Abouzari MR, Berkemeier F, Schmitz G, et al. On the physical interpretation of constant phase elements. Solid State Ion. 2009;180(14–16):922–927.
  • Murmu M, Saha SK, Murmu NC, et al. Effect of stereochemical conformation into the corrosion inhibitive behaviour of double azomethine based Schiff bases on mild steel surface in 1 mol L−1 HCl medium: an experimental, density functional theory and molecular dynamics simulation study. Corros Sci. 2019;146:134–151.
  • Mahato P, Mishra SK, Murmu M, et al. A prolonged exposure of Ti-Si-B-C nanocomposite coating in 3.5 wt% NaCl solution: electrochemical and morphological analysis. Surf Coat Technol. 2019;375:477–488.
  • Calderón JA, Barcia OE, Mattos OR. Reaction model for kinetic of cobalt dissolution in carbonate/bicarbonate media. Corros Sci. 2008;50(7):2101–2109.
  • Modiano S, Carreño JA, Fugivara CS, et al. Effect of hydrogen charging on the stability of SAE 10B22 steel surface in alkaline solutions. Electrochim Acta. 2005;51(4):641–648. DOI:10.1016/j.electacta.2005.05.022

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.