169
Views
1
CrossRef citations to date
0
Altmetric
Review Article

An overview on the influence of equal channel angular pressing parameters and its effect on materials: methods and applications

, &
Pages 1814-1855 | Accepted 12 Apr 2023, Published online: 24 Apr 2023

References

  • Valiev RZ, Islamgaliev RK, Alexandrov IV. Bulk nanostructured materials from severe plastic deformation. Pro Mater Sci. 2000;45(2):103–189.
  • Langdon TG. The principles of grain refinement in equal-channel angular pressing. Materials Science & Engineering A. 2007;462(1–2):3–11.
  • Balasundar I, Rao MS, Raghu T. Equal channel angular pressing die to extrude a variety of materials. Mater Des. 2009;30(4):1050–1059.
  • Djavanroodi F, Ebrahimi M. Effect of die channel angle, friction and back pressure in the equal channel angular pressing using 3D finite element simulation. Materials Science & Engineering A. 2010;527(4–5):1230–1235.
  • Abushgair K (2015, March). Optimizing the equal channel angular pressing process (ECAP) operation parameters to produce bulk nanostructure materials. In AIP Conference Proceedings, Fethiye, Turkey (Vol. 1653, No. 1, p. 020004). AIP Publishing LLC.
  • Segal VM. Materials processing by simple shear. Materials Science & Engineering A. 1995;197(2):157–164.
  • Djavanroodi F, Omranpour B, Ebrahimi M, et al. Designing of ECAP parameters based on strain distribution uniformity. Prog Nat Sci Mater Int. 2012;22(5):452–460.
  • Hu HJ, Zhang DF, Pan FS. Die structure optimization of equal channel angular extrusion for AZ31 magnesium alloy based on finite element method. Trans Nonferrous Met Soc China. 2010;20(2):259–266.
  • Kumar SR, Sankar VH, Arunvinthan S, et al. (2018). Structure and properties of Al Mg alloy processed by equal channel angular pressing at different channel angles–90o, 120o. Materials Today: Proceedings, Tamilnadu, 5(10), 21482–21488.
  • Reihanian M, Ebrahimi R, Moshksar MM, et al. Microstructure quantification and correlation with flow stress of ultrafine grained commercially pure Al fabricated by equal channel angular pressing (ECAP). Mater Charact. 2008;59(9):1312–1323.
  • Figueiredo RB, Beyerlein IJ, Zhilyaev AP, et al. Evolution of texture in a magnesium alloy processed by ECAP through dies with different angles. Materials Science & Engineering A. 2010;527(7–8):1709–1718.
  • Djavanroodi F, Ebrahimi M. Effect of die parameters and material properties in ECAP with parallel channels. Materials Science & Engineering A. 2010;527(29–30):7593–7599.
  • Naik GM, Narendranath S, Kumar SS. Effect of ECAP die angles on microstructure mechanical properties and corrosion behavior of AZ80 Mg alloy. J Mater Eng Perform. 2019;28(5):2610–2619.
  • Basavaraj VP, Chakkingal U, Kumar TP. Study of channel angle influence on material flow and strain inhomogeneity in equal channel angular pressing using 3D finite element simulation. J Mater Process Technol. 2009;209(1):89–95.
  • El Mahallawy N, Shehata FA, Abd El Hameed M, et al. 3D FEM simulations for the homogeneity of plastic deformation in Al–Cu alloys during ECAP. Materials Science & Engineering A. 2010;527(6):1404–1410.
  • Ebrahimi M, Attarilar S, Shaeri MH, et al. An investigation into the effect of alloying elements on corrosion behavior of severely deformed Cu-Sn alloys by equal channel angular pressing. Arch Civil Mech Eng. 2019;19(3):842–850.
  • Ebrahimi M, Rajabifar B, Djavanroodi F. New approaches to optimize strain behavior of Al6082 during equal channel angular pressing. J Strain Anal Eng Des. 2013;48(6):395–404.
  • Djavanroodi F, Zolfaghari AA, Ebrahimi M, et al. Route effect on equal channel angular pressing of copper tube. Acta Metall Sin. 2014;27:95–100.
  • Stráská J, Janeček M, Čížek J, et al. Microstructure stability of ultra-fine grained magnesium alloy AZ31 processed by extrusion and equal-channel angular pressing (EX–ECAP). Mater Charact. 2014;94:69–79.
  • Hassani A, Zabihi M. High strain rate superplasticity in a nano-structured Al–Mg/SiCP composite severely deformed by equal channel angular extrusion. Mater Des. 2012;39:140–150.
  • Jiang F, Tang L, Huang J, et al. Influence of equal channel angular pressing on the evolution of microstructures, aging behavior and mechanical properties of as-quenched Al-6.6 Zn-1.25 Mg alloy. Mater Charact. 2019;153:1–13.
  • Abd El Aal MI, Sadawy MM. Influence of ECAP as grain refinement technique on microstructure evolution, mechanical properties and corrosion behavior of pure aluminum. Trans Nonferrous Met Soc China. 2015;25(12):3865–3876.
  • Venkatachalam P, Kumar SR, Ravisankar B, et al. Effect of processing routes on microstructure and mechanical properties of 2014 Al alloy processed by equal channel angular pressing. Trans Nonferrous Met Soc China. 2010;20(10):1822–1828. Wei, J., Huang, G., Yin, D., Li, K., Wang, Q., & Zhou, H. (2017). Effects of ECAP and annealing treatment on the microstructure and mechanical. DOI:10.1016/S1003-6326(09)60380-0.
  • Qiao XG, Ying T, Zheng MY, et al. Microstructure evolution and mechanical properties of nano-SiCp/AZ91 composite processed by extrusion and equal channel angular pressing (ECAP). Mater Charact. 2016;121:222–230.
  • Cardoso KR, Travessa DN, Jorge Junior AM, et al. Microstructure evolution of AA7050 Al alloy during equal-channel angular pressing. Mater Res. 2012;15(5):732–738.
  • Horita Z, Fujinami T, Nemoto M, et al. Improvement of mechanical properties for Al alloys using equal-channel angular pressing. J Mater Process Technol. 2001;117(3):288–292.
  • Arab SM, Akbarzadeh A. The effect of equal channel angular pressing process on the microstructure of AZ31 Mg alloy strip shaped specimens. J Magnesium Alloys. 2013;1(2):145–149.
  • Wei J, Huang G, Yin D, et al. Effects of ECAP and annealing treatment on the microstructure and mechanical properties of Mg-1Y (wt.%) binary alloy. Metals. 2017;7(4):119.
  • Zheng LJ, Li HX, Hashmi MF, et al. Evolution of microstructure and strengthening of 7050 Al alloy by ECAP combined with heat-treatment. J Mater Process Technol. 2006;171(1):100–107.
  • Djavanroodi F, Zolfaghari AA, Ebrahimi M, et al. Equal channel angular pressing of tubular samples. Acta Metall Sin. 2013;26(5):574–580.
  • Molodova X, Gottstein G, Winning M, et al. Thermal stability of ECAP processed pure copper. Materials Science & Engineering A. 2007;460:204–221.
  • Saravanan M, Pillai RM, Pai BC, et al. Equal channel angular pressing of pure aluminium–an analysis. Bull Mater Sci. 2006;29(7):679–684.
  • Abioye OP, Atanda PO, Osinkolu GA, et al. Influence of equal channel angular extrusion on the tensile behavior of Aluminum 6063 alloy. Procedia Manuf. 2019;35:1337–1343.
  • Iyappan SK, Karthikeyan S, Ravikumar K, et al. Mechanical properties and machinability of aluminium and aluminium-silicon carbide composites processed by Equal Channel Angular Pressing (ECAP). Adv Mater Process Technol. 2020;8(1):1–14.
  • Damavandi E, Nourouzi S, Rabiee SM, et al. Effect of route BC-ECAP on microstructural evolution and mechanical properties of Al–Si–Cu alloy. J Mater Sci. 2021;56(4):3535–3550.
  • Maganti NR, Kumar KN (2017). Effect of equal channel angular pressing process on the hardness and microstructure of copper and Al-6082 alloy: a preliminary investigation. Materials Today: Proceedings, Hyderabad, 4(8), 8400–8408.
  • Sahai A, Raj KH, Gupta NK. Mechanical behaviour and surface profile analysis of Al6061 alloy processed by equal channel angular extrusion. Procedia Eng. 2017;173:956–963.
  • Ebrahimi M, Attarilar S, Gode C, et al. Damage prediction of 7025 aluminum alloy during equal-channel angular pressing. Int J Miner Metall Mater. 2014;21(10):990–998.
  • Xu C, Dixon W, Furukawa M, et al. Developing superplasticity in a spray-cast aluminum 7034 alloy through equal-channel angular pressing. Mater Lett. 2003;57(22–23):3588–3592.
  • Safari M, Joudaki J. Effect of temperature on strength and hardness in multi-pass Equal Channel Angular Pressing (ECAP) of aluminium alloys. Trans Indian Inst Met. 2020;73(3):619–627.
  • Sabbaghianrad S, Torbati-Sarraf SA, Langdon TG. An investigation of the limits of grain refinement after processing by a combination of severe plastic deformation techniques: a comparison of Al and Mg alloys. Materials Science & Engineering A. 2018;712:373–379.
  • Horita Z, Fujinami T, Nemoto M, et al. Equal-channel angular pressing of commercial aluminum alloys: grain refinement, thermal stability and tensile properties. Metall Mater Trans A. 2000;31(3):691–701.
  • Sabirov I, Perez-Prado MT, Murashkin M, et al. Application of equal channel angular pressing with parallel channels for grain refinement in aluminium alloys and its effect on deformation behavior. Int J Mater Form. 2010;3(1):411–414.
  • Kim WJ, Kim JK, Kim HK, et al. Effect of post equal-channel-angular-pressing aging on the modified 7075 Al alloy containing Sc. J Alloys Compd. 2008;450(1–2):222–228.
  • Aydın M, Heyal YAKUP. Effect of equal channel angular pressing on microstructural and mechanical properties of as cast Al–20 wt-% Zn alloy. Mater Sci Technol. 2013;29(6):679–688.
  • Anil Kumar V, Karthikeyan MK, Gupta RK, et al. Equal channel angular pressing of al alloy AA2219. In: Advanced materials research. Vol. 67. Switzerland: Trans Tech Publications Ltd; 2009. pp. 53–58.
  • Banjongprasert C, Domrong C, Chairuangsri T. Effects of passes on equal channel angular pressing of 6061 aluminium alloy. In: Advanced materials research. Vol. 747. Switzerland: Trans Tech Publications Ltd; 2013. pp. 615–618.
  • Demirtas M, Yanar H, Saray O, et al. Room temperature superplasticity in fine/ultrafine-grained Zn-Al alloys with different phase compositions. In: Defect and Diffusion Forum. Vol. 385. Switzerland: Trans Tech Publications Ltd; 2018. pp. 72–77.
  • Horikiri G, Kitazumi T, Natori K, et al. Improvement in mechanical properties of semi-solid AA7075 aluminum alloys by equal-channel angular pressing. Procedia Eng. 2017;207:1451–1456.
  • Iqbal UM, Kumar VS. Effect of process parameters on microstructure and mechanical properties on severe plastic deformation process of AA7075-T6 aluminum alloy. In: Advanced materials research. Vol. 622. Switzerland: Trans Tech Publications Ltd; 2013. pp. 705–709.
  • Jia HL, Marthinsen K, Li YJ. Al-5Cu alloy processed by equal-channel angular pressing. In: Materials Science Forum. Vol. 879. Switzerland: Trans Tech Publications Ltd; 2017. pp. 843–848.
  • Kawasaki M, Langdon T. Microstructure development and superplasticity in a Zn-22% Al eutectoid alloy processed by severe plastic deformation. In: Materials Science Forum. Vol. 783. Switzerland: Trans Tech Publications Ltd; 2014. pp. 2647–2652.
  • Liu ZH, Qi HR, Wang X, et al. Microstructural and mechanical properties of Al 7003 alloy processed by dual equal channel lateral extrusion. In: Advanced materials research. Vol. 852. Switzerland: Trans Tech Publications Ltd; 2014. pp. 214–218.
  • Lokesh T, Mallik US. Effect of equal channel angular pressing on the microstructure and mechanical properties of hybrid metal matrix composites. Indian J Sci Technol. 2016;9(35):1–7.
  • Mogucheva A, Yuzbekova D, Lebedkina T, et al. Influence of severe plastic deformation on mechanical properties of an AA5024 alloy. In: Materials science forum. Vol. 879. Switzerland: Trans Tech Publications Ltd; 2017. pp. 1317–1322.
  • Kumar SR, Ravisankar B, Sathya P, et al. Equal channel angular pressing of an aluminium magnesium alloy at room temperature. Trans Indian Inst Met. 2014;67(4):477–484.
  • Tekeli S, Güral A. High temperature tensile properties of equal channel angular pressed Al-Zn-Mg-Cu alloy. High Temp Mater Process. 2012;31(6):675–678.
  • Xu C, Langdon TG, Horita Z, et al. Using equal-channel angular pressing for the production of superplastic aluminum and magnesium alloys. J Mater Eng Perform. 2004;13(6): 683–690. 35.
  • Yee SV, Hussain Z, Anasyida AS, et al. Ageing characteristics of equal channel angular pressed Al-Mg-Si alloy. In: Advanced materials research. Vol. 858. Switzerland: Trans Tech Publications Ltd; 2014. pp. 3–6.
  • Yee SV, Hussain Z, Seman AA, et al. The influence of ECAP pass through bc route on mechanical properties of aluminum alloy 6061. In: Advanced materials research. Vol. 1024. Switzerland: Trans Tech Publications Ltd; 2014. pp. 219–222.
  • Zuiko I, Gazizov M, Kaibyshev R. Effect of ECAP prior to aging on microstructure, precipitation behaviour and mechanical properties of an Al-Cu-Mg alloy. In: Defect and diffusion forum. Vol. 385. Switzerland: Trans Tech Publications Ltd; 2018. pp. 290–295.
  • Howeyze M, Eivani AR, Arabi H, et al. The effect of amount of pre-strain using equal channel angular pressing on softening response of AA5052 alloy. J Mater Res Technol. 2020;9(3):6682–6695.
  • Chinababu M, Gudimetla K, Sivaprasad K, et al. (2018). Microstructure and mechanical properties of Cu-7wt.% Al alloy produced by equal channel angular pressing with different routes. Materials Today: Proceedings, Tiruchirapalli, 5(2), 8241–8248.
  • Darban H, Mohammadi B, Djavanroodi F. Effect of equal channel angularpressing on fracture toughness of Al-7075. Eng Fail Anal. 2016;65:1–10.
  • Demirtas MUHAMMET, Purcek G, Yanar HARUN, et al. Effect of equal-channel angular pressing on room temperature superplasticity of quasi-single phase Zn–0.3 Al alloy. Materials Science & Engineering A. 2015;644:17.
  • Djavanroodi F, Ahmadian H, Naseri R, et al. Experimental investigation of ultrasonic assisted equal channel angular pressing process. Arch Civil Mech Eng. 2016;16(3):249–255.
  • Howeyze M, Arabi H, Eivani AR, et al. Strengthening of AA5052 aluminum alloy by equal channel angular pressing followed by softening at room temperature. Materials Science & Engineering A. 2018;720:160–168.
  • Shaeri MH, Shaeri M, Salehi MT, et al. Effect of equal channel angular pressing on aging treatment of Al-7075 alloy. Prog Nat Sci Mater Int. 2015;25(2):159–168.
  • Procházka R, Sláma P, Dlouhý J, et al. Local mechanical properties and microstructure of EN AW 6082 aluminium alloy processed via ECAP–Conform technique. Materials. 2020;13(11):2572.
  • Salem HA, Goforth RE. Influence of intense plastic straining on room temperature mechanical properties of Al-Cu-Li base alloys. In: Current Advances in Mechanical Design and Production VII. Pergamon; 2000. pp. 357–368.
  • Heczel A, Akbaripanah F, Salevati MA, et al. A comparative study on the microstructural evolution in AM60 alloy processed by ECAP and MDF. J Alloys Compd. 2018;763:629–637.
  • Hu HJ, Sun Z, Ou ZW, et al. Wear behaviors and wear mechanisms of wrought magnesium alloy AZ31 fabricated by extrusion-shear. Eng Fail Anal. 2017;72:25–33.
  • Huang SJ, Chiu C, Chou TY, et al. Effect of equal channel angular pressing (ECAP) on hydrogen storage properties of commercial magnesium alloy AZ61. Int J Hydrogen Energy. 2018;43(9):4371–4380.
  • Masoudpanah SM, Mahmudi R. The microstructure, tensile, and shear deformation behavior of an AZ31 magnesium alloy after extrusion and equal channel angular pressing. Mater Des. 2010;31(7):3512–3517.
  • Radi Y, Mahmudi R. Effect of Al2O3 nano-particles on the microstructural stability of AZ31 Mg alloy after equal channel angular pressing. Materials Science & Engineering A. 2010;527(10–11):2764–2771.
  • Gopi KR, Nayaka HS (2017). Microstructure and mechanical properties of magnesium alloy processed by equal channel angular pressing (ECAP). Materials Today: Proceedings, Surathkal, 4(9), 10288–10292.
  • Sunil BR, Kumar TS, Chakkingal U, et al. In vitro and in vivo studies of biodegradable fine grained AZ31 magnesium alloy produced by equal channel angular pressing. Mater Sci Eng C. 2016;59:356–367.
  • Syukron M, Ojima M, Seman AA, et al. Mechanical properties of 1.5 wt.% TiB2-added hypoeutectic Al-Mg-Si alloys processed by equal channel angular pressing. Procedia Chem. 2016;19:106–112.
  • Estrin Y, Martynenko N, Anisimova N, et al. The effect of equal-channel angular pressing on the microstructure, the mechanical and corrosion properties and the anti-tumor activity of magnesium alloyed with silver. Materials. 2019;12(23):3832.
  • Gzyl M, Rosochowski A, Yakushina E, et al. Route effects in I-ECAP of AZ31B magnesium alloy. In: Key Engineering Materials. Vol. 554. Switzerland: Trans Tech Publications Ltd; 2013. pp. 876–884.
  • Xu J, Guo B, Shan DB, et al. Micro-tensile behavior at a high temperature in an AZ31 magnesium alloy processed by ECAP. In: Materials Science Forum. Vol. 783. Switzerland: Trans Tech Publications Ltd; 2014. pp. 2726–2731.
  • Martynenko N, Lukyanova E, Serebryany V, et al. Effect of equal channel angular pressing on structure, texture, mechanical and in-service properties of a biodegradable magnesium alloy. Mater Lett. 2019;238:218–221.
  • Ravikumar K, Ganesan S, Karthikeyan S (2021). Equal channel angular pressing and mechanical investigation of magnesium composite with aluminium oxide and silicon carbide as reinforcements. Materials Today: Proceedings, Chennai, 45, 6103–6107.
  • Tong LB, Zheng MY, Chang H, et al. Microstructure and mechanical properties of Mg–Zn–Ca alloy processed by equal channel angular pressing. Materials Science & Engineering A. 2009;523(1–2):289–294.
  • Faraji G, Babaei A, Mashhadi MM, et al. Parallel tubular channel angular pressing (PTCAP) as a new severe plastic deformation method for cylindrical tubes. Mater Lett. 2012;77:82–85.
  • Şahbaz M, Kaya H, Kentli A. A new severe plastic deformation method: thin-walled open channel angular pressing (TWO-CAP). Int J Adv Manuf Technol. 2020;106(3):1487–1496.
  • Ahmadi S, Alimirzaloo V, Faraji G, et al. A new modified Cyclic Extrusion Channel Angular Pressing (CECAP) process for producing ultrafine-grained Mg alloy. Trans Indian Inst Met. 2020;73(10):2447–2456.
  • Kocich R, Kunčická L, Král P, et al. Sub-structure and mechanical properties of twist channel angular pressed aluminium. Mater Charact. 2016;119:75–83.
  • Ensafi M, Faraji G, Abdolvand H. Cyclic extrusion compression angular pressing (CECAP) as a novel severe plastic deformation method for producing bulk ultrafine grained metals. Mater Lett. 2017;197:12–16.
  • Pardis N, Talebanpour B, Ebrahimi R, et al. Cyclic expansion-extrusion (CEE): a modified counterpart of cyclic extrusion- compression (CEC). Materials Science & Engineering A. 2011;528(25–26):7537–7540.
  • Ebrahimi M, Wang Q, Attarilar S. A comprehensive review of magnesium-based alloys and composites processed by cyclic extrusion compression and the related techniques. Pro Mater Sci. 2022;101016.
  • Ebrahimi M, Par MA. Twenty-year uninterrupted endeavor of friction stir processing by focusing on copper and its alloys. J Alloys Compd. 2019;781:1074–1090.
  • Jiang J, Aibin MA, Saito N, et al. Improving corrosion resistance of RE-containing magnesium alloy ZE41A through ECAP. J Rare Earths. 2009;27(5):848–852.
  • Karpuz P, Simsir CANER, Gür CH. Investigating the effects of hardening of aluminium alloys on equal-channel angular pressing—a finite-element study. Materials Science & Engineering A. 2009;503(1–2):148–151.
  • Sadasivan N, Balasubramanian M, Venkatesh R, et al. Influence of equal channel angular pressing in an acute angle die with a back pressure notch on grain refinement, torsion and mechanical properties of aluminium. Materialwissenschaft und Werkstofftechnik. 2019;50(2):155–164.
  • Qarni MJ, Sivaswamy G, Rosochowski A, et al. Effect of incremental equal channel angular pressing (I-ECAP) on the microstructural characteristics and mechanical behaviour of commercially pure titanium. Mater Des. 2017;122:385–402.
  • Dyakonov GS, Mironov S, Semenova IP, et al. EBSD analysis of grain-refinement mechanisms operating during equal-channel angular pressing of commercial-purity titanium. Acta Materialia. 2019;173:174–183.
  • Wang H, Ban C, Zhao N, et al. Cryogenic temperature equal channel angular pressing of pure titanium: microstructure and homogeneity. J Mater Res Technol. 2021;14:1167–1179.
  • Franz M, Mingler B, Krystian M, et al. Strengthening of titanium by equal channel angular pressing‐impact on oxide layer properties of pure titanium and Ti6Al4V. Adv Mater Interfaces. 2020;7(16):2000552.
  • Zhao Y, Guo H, Shi Z, et al. Microstructure evolution of TA15 titanium alloy subjected to equal channel angular pressing and subsequent annealing at various temperatures. J Mater Process Technol. 2011;211(8):1364–1371.
  • Krystian M, Huber D, Horky J (2017, October). Equal channel angular pressing (ECAP) and forging of commercially pure titanium (CP-Ti). In AIP Conference Proceedings, Austria (Vol. 1896, No. 1, p. 200003). AIP Publishing LLC.
  • Kim TN, Balakrishnan A, Lee BC, et al. In vitro biocompatibility of equal channel angular processed (ECAP) titanium. Biomed Mater. 2007;2(3):S117.
  • Bergmann M, Urban G. Track A. Biomaterials and Biocompatibility. Biomed Eng/Biomed Tech. 2016;61(s1):1–15.
  • Greger M, Widomská M, Kander L. Mechanical properties of ultra-fine grain titanium. J Achieve Mater Manuf Eng. 2010;40(1):33–40.
  • Kim I, Kim J, Shin DH, et al. Effects of equal channel angular pressing temperature on deformation structures of pure Ti. Materials Science & Engineering A. 2003;342(1–2):302–310.
  • Angella G, Jahromi BE, Vedani M. A comparison between equal channel angular pressing and asymmetric rolling of silver in the severe plastic deformation regime. Materials Science & Engineering A. 2013;559:742–750.
  • Ebrahimi M, Gode C. Severely deformed copper by equal channel angular pressing. Prog Nat Sci Mater Int. 2017;27(2):244–250.
  • Flater PJ, House JW, O’Brien JM, et al. (2007, December). High strain‐rate properties of tantalum processed by equal channel angular pressing. In AIP Conference Proceedings, Hawai (Vol. 955, No. 1, pp. 517–520). American Institute of Physics.
  • Fukuda Y, Oh-Ishi K, Horita Z, et al. Processing of a low-carbon steel by equal-channel angular pressing. Acta Materialia. 2002;50(6):1359–1368.
  • Hao T, Fan ZQ, Zhang T, et al. Strength and ductility improvement of ultrafine-grained tungsten produced by equal-channel angular pressing. J Nucl Mater. 2014;455(1–3):595–599.
  • Neishi K, Horita Z, Langdon TG. Grain refinement of pure nickel using equal-channel angular pressing. Materials Science & Engineering A. 2002;325(1–2):54–58.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.