367
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Adjustment of indoor temperature using internal thermal mass under different tropical weather conditions

, , &

References

  • ACI Committee 122. 2002. Guide to Thermal Properties of Concrete and Masonry Systems. ACI 122R–02. West Conshohocken, PA: ASTM.
  • Al Faruq, S.M.A., M. Alamin, M.R. Hasan, M.T. Haque, and S. Alam. 2013. Measuring specific heat of normal strength concrete and the comparison of the specific heat with different types of concrete. International Journal of Advanced Structures and Geotechnical Engineering 2(2):4–11.
  • Ameen, A. 2005. The challenges of air-conditioning in tropical and humid tropical climates. International Conference on Mechanical Engineering 2005 (ICME05-KEY-03), Dhaka, Bangladesh, December 28–30.
  • Anand, S. 2015. Building envelope performance with different insulating materials—An exergy approach. Journal of Thermal Engineering 1(4):433–39.
  • Andelković, V.B., V.B. Stojanović, M.M. Stojiljković, N.J. Janevski, and B.M. Stojanović. 2012. Thermal mass impact on energy performance of a low, medium and heavy mass building in Belgrade. Thermal Science 16(2):S507–S20.
  • Asan, H. 2006. Numerical computation of time lags and decrement factors for different building materials. Building and Environment 41:615–20. doi:10.1016/j.buildenv.2005.02.020.
  • Balaras, C.A. 1996. The role of thermal mass on the cooling load of buildings. An overview of computational methods. Energy and Buildings 24(1):1–10. doi:10.1016/0378-7788(95)00956-6.
  • Birker, P.J.M.W.L., and F.B. Padley. 1987. Recent Advances in Chemistry and Technology of Fats and Oils, pp. 1–11, Physical properties of fats and oils. R.J. Hamilton and A. Bhati, eds. Dordrecht, The Netherlands: Springer. doi:10.1007/978-94-011-7471-8_1.
  • Brambilla, A., J. Bonvin, F. Flourentzou, and T. Jusselme. 2018. On the influence of thermal mass and natural ventilation on overheating risk in offices. Buildings 8(47):1–12. doi:10.3390/buildings8040047.
  • Chakraborty, P. 2017. Impact of furniture on the energy consumption of commercial buildings. Proceedings of the 2nd International Conference on Communication and Electronics Systems, October 19–20, Coimbatore, India, pp. 316–19.
  • Damiati, S.A., S.A. Zaki, H.B. Rijal, and S. Wonorahardjo. 2016. Field study on adaptive thermal comfort in office buildings in Malaysia, Indonesia, Singapore, and Japan during hot and humid season. Building and Environment 109:208–23. doi:10.1016/j.buildenv.2016.09.024.
  • Damiati, S.A., S.A. Zaki, S. Wonorahardjo, M.S.M. Ali, and H.B. Rijal. 2015. The International Joint-Conference Senvar-Inta-Avan 2015 “Wisdom of the Tropics: Past Present & Future,” pp. 53–64, Thermal comfort survey in office buildings in Bandung, Indonesia. S.I. Ariffin, ed. Johor, Malaysia: Institut Sultan Iskandar.
  • de Dear, R.J., K.G. Leow, and S.C. Foo. 1991. Thermal comfort in the humid tropics: Field experiments in air conditioned and naturally ventilated buildings in Singapore. International Journal of Biometeorology 34(4):259–65. doi:10.1007/BF01041840.
  • de Klijn-Chevalerias, M.L., R.C.G.M. Loonen, A. Zarzycka, D. de Witte, M.V. Sarakinioti, and J.L.M. Hensen. 2017. Proceedings of the Symposium on Simulation for Architecture and Urban Design, pp. 243–250, Assisting the development of innovative responsive facade elements using building performance simulation. M. Turrin, B. Peters, W. O’Brien, R. Stouffs, and T. Dogan, eds, May 22–24, Spadina Crescent, Toronto, Canada.
  • de Witte, D., M.L. de Klijn-Chevalerias, R.C.G.M. Loonen, J.L.M. Hensen, U. Knaack, and G. Zimmermann. 2017. Convective concrete: Additive manufacturing to facilitate activation of thermal mass. Journal of Facade Design and Engineering 5(1):107–17. doi:10.7480/jfde.2017.1.1430.
  • Doran, D., and B. Cather, eds. 2013. Construction Materials: Reference Book, 2nd Ed. Abingdon: Taylor & Francis Group.
  • Elias-ozkan, S.T., F. Summers, N. Surmeli, and S. Yannas. 2006. A comparative study of the thermal performance of building materials. Proceeding of PLEA2006, September 6–8, Geneva, Switzerland.
  • Eludoyin, O.M. 2014. A perspective of the diurnal aspect of thermal comfort in Nigeria. Atmospheric and Climate Sciences 4(4):696–709. doi:10.4236/acs.2014.44063.
  • Goulart, S.V.G. 2004. Thermal Inertia and Natural Ventilation—Optimisation of Thermal Storage as a Cooling Technique for Residential Buildings in Southern Brazil. Open University of Brazil.
  • Grondzik, W.T., and A.G. Kwok. 2015. Mechanical and Electrical Equipment for Buildings, 12th Ed., Hoboken, NJ: John Wiley & Sons.
  • Haase, M., and I. Andresen. 2007. Energy efficiency and comfort of concrete structures. Research report. SINTEF Building and Infrastructure, COIN—Concrete Innovation Centre, Norway.
  • Halliday, D., R. Resnick, and J. Walker. 2013. Fundamentals of Physics Extended. 10th Ed. Hoboken: Wiley.
  • Karlsson, J. 2012. Possibilities of Using Thermal Mass in Buildings to Save Energy, Cut Power Consumption Peaks and Increase the Thermal Comfort. Sweden: Division of Building Materials, LTH, Lund University.
  • Kemajou, A., L. Mba, and G.P. Mbou. 2012. Energy efficiency in air-conditioned buildings of the tropical humid climate. IJRRAS 11(2):235–40.
  • Kuznik, F., D. David, K. Johannes, and J.J. Roux. 2011. A review on phase change materials integrated in building walls. Renewable and Sustainable Energy Reviews 15(1):379–91. doi:10.1016/j.rser.2010.08.019.
  • Li, Y., and P. Xu. 2016. Thermal mass design in buildings—Heavy or light? International Journal of Ventilation 5(1):143–50. doi:10.1080/14733315.2006.11683731.
  • Liu, C. 2012. Phase change behaviour of lauric acid in a horizontal cylindrical latent heat energy storage system, Master’s Thesis, Dalhousie University Halifax, Nova Scotia, Canada.
  • Loonen, R.C.G.M., M.L. de Klijn-Chevalerias, and J.L.M. Hensen. 2019. Opportunities and pitfalls of using building performance simulation in explorative R&D contexts. Journal of Building Performance Simulation 12(3):1–16. doi:10.1080/19401493.2018.1561754.
  • Mansor, T.S.T., Y.B. Che Man, M. Shuhaimi, M.J. Abdul Afiq, and F.K.M. Ku Nurul. 2012. Physicochemical properties of virgin coconut oil extracted from different processing methods. International Food Research Journal 19(3):837–45.
  • Meir, I.A., and S. Roaf. 2002. Thermal comfort–thermal mass: Housing in hot dry climates. Proceedings: Indoor Air 2002, June 30–July 5, Monterey, California. doi:10.13140/2.1.3449.3446.
  • Mettawee, E.S., and A.I. Ead. 2013. Energy saving in building with latent heat storage. International Journal of Thermal & Environmental Engineering 5(1):21–30.
  • Motamedi, S., and M. Akhavan. 2012. Energy Analysis of Using Thermal Mass in a Hot Humid climate, Recent Advances in Energy, Environment and Economic Development. Proceedings of the 3rd International Conference on Development, Energy, Environment, Economics (DEEE '12), December 2–4, Paris, France.
  • Nguyen, A., and S. Reiter. 2014. A climate analysis tool for passive heating and cooling strategies in hot humid climate based on typical meteorological year data sets. Energy and Buildings 68:756–63.
  • Ogoli, D.M. 2003. Predicting indoor temperatures in closed buildings with high thermal mass. Energy and Buildings 35:851–62.
  • Reilly, A., and O. Kinnane. 2017. The impact of thermal mass on building energy consumption. Applied Energy 198:108–21.
  • Seong, Y.B., and J.H. Lim. 2013. Energy saving potentials of phase change materials applied to lightweight building envelopes. Energies 6(10):5219–30. doi:10.3390/en6105219.
  • Shaghayegh, M., and A. Shea. 2013. Performance evaluation of modern building thermal envelope designs in the semi-arid continental climate of Tehran. Buildings 3:674–88. doi:10.3390/buildings3040674.
  • Sharma, A., V.V. Tyagi, C.R. Chen, and D. Buddhi. 2009. Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews 13(2):318–45. doi:10.1016/j.rser.2007.10.005.
  • Silalahi, A.O., N. Sukmawati, I.M. Sutjahja, D. Kurnia, and S. Wonorahardjo. 2017. Thermophysical parameters of organic PCM coconut oil from T-history method and its potential as thermal energy storage in Indonesia. IOP Conference Series: Materials Science and Engineering 214:012034(1–8). doi:10.1088/1757-899X/214/1/012034.
  • Socaciu, L.G. 2012. Thermal energy storage with phase change material. Leonardo Electronic Journal of Practices and Technologies 20:75–98. doi:10.1016/j.scs.2013.05.007.
  • Tipvarakarnkoon, T., R. Blochwitz, and B. Senge. 2008. Rheological properties and phase change behaviors of coconut fats and oils. Annual Transactions of the Nordic Rheology Society 16:159–166.
  • Tyagi, V.V., and D. Buddhi. 2007. PCM thermal storage in buildings: A state of art. Renewable and Sustainable Energy Reviews 11(6):1146–66. doi:10.1016/j.rser.2005.10.002.
  • Wang, L., and N.H. Wong. 2005. Thermal analysis of climate environments based on weather data in Singapore for naturally ventilated buildings. 10th International Conference on Indoor Air Quality and Climate, September 4–9, Beijing.
  • Wi, S., J. Seo, S.G. Jeong, S.J. Chang, Y. Kang, and S. Kim. 2015. Thermal properties of shape-stabilized phase change materials using fatty acid ester and exfoliated graphite nanoplatelets for saving energy in buildings. Solar Energy Materials & Solar Cells 143:168–73.
  • Wonorahardjo, S. 2012. New concepts in districts planning, based on heat island investigation. Procedia - Social and Behavioral Sciences 36:235–42. doi:10.1016/j.sbspro.2012.03.026.
  • Wonorahardjo, S., I.M. Sutjahja, D. Kurnia, Z. Fahmi, and W.A. Putri. 2018. Potential of thermal energy storage using coconut oil for air temperature control. Buildings 8(95):1–16.
  • Xie, C. 2012. Interactive heat transfer simulations for everyone. The Physics Teacher 50(4):237–40.
  • Zhang, Y., G. Zhou, K. Lin, Q. Zhang, and H. Di. 2007. Application of latent heat thermal energy storage in buildings: State-of-the-art and outlook. Building and Environment 42:2197–2209.
  • Zhou, D., C.Y. Zhao, and Y. Tian. 2012. Review on thermal energy storage with phase change materials (PCMs) in building applications. Applied Energy 92:593–605. doi: https://doi.org/10.1016/j.apenergy.2011.08.025.
  • Zhou, J., G. Zhang, Y. Lin, and Y. Li. 2008. Coupling of thermal mass and natural ventilation in buildings. Energy and Buildings 40(6):979–86. doi:10.1016/j.enbuild.2007.08.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.