446
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

A review of heat and mass transfer mechanisms of dehumidifiers and regenerators for liquid desiccant cooling systems

, , , , &

References

  • Abdel-Salam, A. H., and C. J. Simonson. 2014. Annual evaluation of energy, environmental and economic performances of a membrane liquid desiccant air conditioning system with/without ERV. Applied Energy 116:134–48.
  • Abdel-Salam, A. H., and C. J. Simonson. 2016. State-of-the-art in liquid desiccant air conditioning equipment and systems. Renewable and Sustainable Energy Reviews 58:1152–83.
  • Abdel-Salam, M. R. H., M. Fauchoux, G. Ge, R. W. Besant, and C. J. Simonson. 2014. Expected energy and economic benefits, and environmental impacts for liquid-to-air membrane energy exchangers (LAMEEs) in HVAC systems: A review. Applied Energy 127:202–18.
  • Abdel-Salam, M. R. H., G. Ge, M. Fauchoux, R. W. Besant, and C. J. Simonson. 2014. State-of-the-art in liquid-to-air membrane energy exchangers (LAMEEs): A comprehensive review. Renewable and Sustainable Energy Reviews 39:700–28.
  • Abdul-Wahab, S. A., M. K. Abu-Arabi, and Y. H. Zurigat. 2004. Effect of structured packing density on performance of air dehumidifier. Energy Conversion and Management 45 (15–16):2539–52.
  • Al-Farayedhi, A. A., P. Gandhidasan, and M. A. Al-Mutairi. 2002. Evaluation of heat and mass transfer coefficients in a gauze-type structured packing air dehumidifier operating with liquid desiccant. International Journal of Refrigeration 25 (3):330–9.
  • Al-Jubainawi, A., Z. Ma, Y. Guo, L. D. Nghiem, P. Cooper, and W. Li. 2017. Factors governing mass transfer during membrane electrodialysis regeneration of LiCl solution for liquid desiccant dehumidification systems. Sustainable Cities and Society 28:30–41.
  • Allouhi, A., T. Kousksou, A. Jamil, P. Bruel, Y. Mourad, and Y. Zeraouli. 2015. Solar driven cooling systems: An updated review. Renewable and Sustainable Energy Reviews 44:159–81.
  • Al-Sulaiman, F. A., P. Gandhidasan, and S. M. Zubair. 2007. Liquid desiccant based two-stage evaporative cooling system using reverse osmosis (RO) process for regeneration. Applied Thermal Engineering 27 (14–15):2449–54.
  • Arora, R. C. 2012. Refrigeration and air conditioning. New Delhi: PHI Learning Pvt. Ltd.
  • Asfand, F., and M. Bourouis. 2015. A review of membrane contactors applied in absorption refrigeration systems. Renewable and Sustainable Energy Reviews 45:173–91.
  • Bai, H., J. Zhu, Z. Chen, and J. Chu. 2018. State-of-art in modelling methods of membrane-based liquid desiccant heat and mass exchanger: A comprehensive review. International Journal of Heat and Mass Transfer 125:445–70.
  • Bergman, T. L., A. S. Lavine, F. P. Incropera, and D. P. DeWitt. 2011. Fundamentals of heat and mass transfer. New York: John Wiley & Sons.
  • Buker, M. S., and S. B. Riffat. 2015. Recent developments in solar assisted liquid desiccant evaporative cooling technology – A review. Energy and Buildings 96:95–108.
  • Chang, C. C., Y. J. Sheng, and H. K. Tsao. 2016. Wetting hysteresis of nanodrops on nanorough surfaces. Physical Review E 94 (4):042807-1-8.
  • Chen, Q., and X. Zhang. 2018. Modeling and data analysis of multistory flat plate quasi-counter-flow membrane dehumidifier. Applied Thermal Engineering 128:837–48.
  • Chen, X. Y., Z. Li, Y. Jiang, and K. Y. Qu. 2006. Analytical solution of adiabatic heat and mass transfer process in packed-type liquid desiccant equipment and its application. Solar Energy 80 (11):1509–16.
  • Chen, Z., J. Zhu, H. Bai, Y. Yan, and L. Zhang. 2017. Experimental study of a membrane-based dehumidification cooling system. Applied Thermal Engineering 115:1315–21.
  • Cheng, Q., and S. Jiao. 2018. Experimental and theoretical research on the current efficiency of the electrodialysis regenerator for liquid desiccant air-conditioning system using LiCl solution. International Journal of Refrigeration 96:1–9.
  • Cheng, Q., and X. Zhang. 2013. Review of solar regeneration methods for liquid desiccant air-conditioning system. Energy and Buildings 67:426–33.
  • Cheng, Q., X. Zhang, and S. Jiao. 2017. Influence of concentration difference between dilute cells and regenerate cells on the performance of electrodialysis regenerator. Energy 140:646–55.
  • Christodoulaki, R. I., E. D. Rogdakis, and I. P. Koronaki. 2008. Hybrid liquid desiccant/vapour compression air-conditioning systems: A critical review. Paper presented at the ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis, Haifa, Israel, July 7–9.
  • Chung, T. W., T. K. Ghosh, and A. L. Hines. 1996. Comparison between random and structured packings for dehumidification of air by lithium chloride solutions in a packed column and their heat and mass transfer correlations. Industrial & Engineering Chemistry Research 35 (1):192–8.
  • Chung, T. W., and C. M. Luo. 1999. Vapor pressures of the aqueous desiccants. Journal of Chemical & Engineering Data 44 (5):1024–7.
  • Chung, T. W., and H. Wu. 1998. Dehumidification of air by aqueous triethylene glycol solution in a spray tower. Separation Science and Technology 33 (8):1213–24.
  • Chung, T. W., and H. Wu. 2000. Comparison between spray towers with and without fin coils for air dehumidification using triethylene glycol solutions and development of the mass-transfer correlations. Industrial & Engineering Chemistry Research 39 (6):2076–84.
  • Conde, M. R. 2004. Properties of aqueous solutions of lithium and calcium chlorides: Formulations for use in air conditioning equipment design. International Journal of Thermal Sciences 43 (4):367–82.
  • Cussler, E. L. 2009. Diffusion: Mass transfer in fluid systems. New York: Cambridge University Press.
  • Dai, Y. J., and H. F. Zhang. 2004. Numerical simulation and theoretical analysis of heat and mass transfer in a cross flow liquid desiccant air dehumidifier packed with honeycomb paper. Energy Conversion and Management 45 (9–10):1343–56.
  • Danckwerts, P. V. 1951. Significance of liquid-film coefficients in gas absorption. Industrial & Engineering Chemistry 43 (6):1460–7.
  • Daou, K., R. Z. Wang, and Z. Z. Xia. 2006. Desiccant cooling air conditioning: A review. Renewable and Sustainable Energy Reviews 10 (2):55–77.
  • Das, R. S., and S. Jain. 2015. Performance characteristics of cross-flow membrane contactors for liquid desiccant systems. Applied Energy 141:1–11.
  • Dong, C., L. Lu, and T. Wen. 2018. Investigating dehumidification performance of solar-assisted liquid desiccant dehumidifiers considering different surface properties. Energy 164:978–94.
  • Elsarrag, E., O. N. Igobo, Y. Alhorr, and P. A. Davies. 2016. Solar pond powered liquid desiccant evaporative cooling. Renewable and Sustainable Energy Reviews 58:124–40.
  • Enteria, N., and K. Mizutani. 2011. The role of the thermally activated desiccant cooling technologies in the issue of energy and environment. Renewable and Sustainable Energy Reviews 15 (4):2095–122.
  • Enteria, N., H. Yoshino, and A. Mochida. 2013. Review of the advances in open-cycle absorption air-conditioning systems. Renewable and Sustainable Energy Reviews 28:265–89.
  • Factor, H. M., and G. Grossman. 1980. A packed bed dehumidifier/regenerator for solar air conditioning with liquid desiccants. Solar Energy 24 (6):541–50.
  • Fakhrabadi, F., and F. Kowsary. 2016. Optimal design of a hybrid liquid desiccant-regenerative evaporative air conditioner. Energy and Buildings 133:141–54.
  • Fan, H., C. J. Simonson, R. W. Besant, and W. Shang. 2006. Performance of a run-around system for HVAC heat and moisture transfer applications using cross-flow plate exchangers coupled with aqueous lithium bromide. HVAC&R Research 12 (2):313–36.
  • Fekadu, G., and S. Subudhi. 2018. Renewable energy for liquid desiccants air conditioning system: A review. Renewable and Sustainable Energy Reviews 93:364–79.
  • Fu, H. X., and X. H. Liu. 2017. Review of the impact of liquid desiccant dehumidification on indoor air quality. Building and Environment 116:158–72.
  • Fu, R. K. Y., Y. F. Mei, G. J. Wan, G. G. Siu, P. K. Chu, Y. X. Huang, X. B. Tian, S. Q. Yang, and J. Y. Chen. 2004. Surface composition and surface energy of Teflon treated by metal plasma immersion ion implantation. Surface Science 573 (3):426–32.
  • Fumo, N., and D. Y. Goswami. 2002. Study of an aqueous lithium chloride desiccant system: Air dehumidification and desiccant regeneration. Solar Energy 72 (4):351–61.
  • Gandhidasan, P., C. F. Kettleborough, and M. R. Ullah. 1986. Calculation of heat and mass transfer coefficients in a packed tower operating with a desiccant-air contact system. Journal of Solar Energy Engineering 108 (2):123–8.
  • Ge, G., A. H. Abdel-Salam, M. R. H. Abdel-Salam, R. W. Besant, and C. J. Simonson. 2017. Heat and mass transfer performance comparison between a direct-contact liquid desiccant packed bed and a liquid-to-air membrane energy exchanger for air dehumidification. Science and Technology for the Built Environment 23 (1):2–15.
  • Ge, G., M. R. H. Abdel-Salam, R. W. Besant, and C. J. Simonson. 2013. Research and applications of liquid-to-air membrane energy exchangers in building HVAC systems at University of Saskatchewan: A review. Renewable and Sustainable Energy Reviews 26:464–79.
  • Ge, G., D. G. Moghaddam, A. H. Abdel-Salam, R. W. Besant, and C. J. Simonson. 2014. Comparison of experimental data and a model for heat and mass transfer performance of a liquid-to-air membrane energy exchanger (LAMEE) when used for air dehumidification and salt solution regeneration. International Journal of Heat and Mass Transfer 68:119–31.
  • Ge, T. S., and J. C. Xu. 2016. Review of solar-powered desiccant cooling systems. In Advances in solar heating and cooling, ed. R. Z. Wang and T. S. Ge, 329–79. Amsterdam: Elsevier.
  • Giampieri, A., Z. Ma, A. Smallbone, and A. P. Roskilly. 2018. Thermodynamics and economics of liquid desiccants for heating, ventilation and air-conditioning – An overview. Applied Energy 220:455–79.
  • Giannetti, N., S. Yamaguchi, and K. Saito. 2016. Wetting behavior of a liquid film on an internally-cooled desiccant contactor. International Journal of Heat and Mass Transfer 101:958–69.
  • Gómez-Castro, F. M., D. Schneider, T. Päßler, and U. Eicker. 2018. Review of indirect and direct solar thermal regeneration for liquid desiccant systems. Renewable and Sustainable Energy Reviews 82:545–75.
  • Gommed, K., and G. Grossman. 2007. Experimental investigation of a liquid desiccant system for solar cooling and dehumidification. Solar Energy 81 (1):131–8.
  • Greenlee, L. F., D. F. Lawler, B. D. Freeman, B. Marrot, and P. Moulin. 2009. Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Research 43 (9):2317–48.
  • Grossman, G. 1984. Heat and mass transfer in film absorption. The handbook for heat and mass transfer operations. Boca Raton, FL: CRC Press.
  • Gugulothu, R., N. S. Somanchi, H. B. Banoth, and K. Banothu. 2015. A review on solar powered air conditioning system. Procedia Earth and Planetary Science 11:361–7.
  • Guo, Y., A. Al-Jubainawi, and Z. Ma. 2019a. Performance investigation and optimisation of electrodialysis regeneration for LiCl liquid desiccant cooling systems. Applied Thermal Engineering 149:1023–34.
  • Guo, Y., A. Al-Jubainawi, and Z. Ma. 2019b. Mathematical modelling and simulation analysis of electrodialysis regeneration for LiCl liquid desiccant air conditioning systems. International Journal of Refrigeration 107:234–45.
  • Guo, Y., Z. Ma, A. Al-Jubainawi, P. Cooper, and L. D. Nghiem. 2016. Using electrodialysis for regeneration of aqueous lithium chloride solution in liquid desiccant air conditioning systems. Energy and Buildings 116:285–95.
  • Gurubalan, A., M. P. Maiya, and S. Tiwari. 2017. Performance characterization of membrane dehumidifier with desiccants in flat-plate arrangement. Energy and Buildings 156:151–62.
  • Haroun, Y., D. Legendre, and L. Raynal. 2010. Direct numerical simulation of reactive absorption in gas-liquid flow on structured packing using interface capturing method. Chemical Engineering Science 65 (1):351–6.
  • Haroun, Y., L. Raynal, and D. Legendre. 2012. Mass transfer and liquid hold-up determination in structured packing by CFD. Chemical Engineering Science 75:342–8.
  • Hewitt, G. F., and J. Barbosa. 2008. Heat exchanger design handbook. New York: Begell House.
  • Higbie, R. 1935. The rate of absorption of a pure gas into a still liquid during short periods of exposure. Transactions of AIChE 31:365–89.
  • Ho, C. K., and S. W. Webb. 2007. Gas transport mechanisms. In Gas transport in porous media, ed. K.H. Clifford and S.W. Webb, 5–26. Dordrecht: Springer.
  • Hu, J., X. Yang, J. Yu, and G. Dai. 2014. Numerical simulation of carbon dioxide (CO2) absorption and interfacial mass transfer across vertically wavy falling film. Chemical Engineering Science 116:243–53.
  • Huang, R. Y. M. 1991. Pervaporation membrane separation processes. Amsterdam: Elsevier Science Ltd.
  • Huang, S. M., M. Yang, and X. Yang. 2014. Performance analysis of a quasi-counter flow parallel-plate membrane contactor used for liquid desiccant air dehumidification. Applied Thermal Engineering 63 (1):323–32.
  • Huang, S. M., L. Z. Zhang, K. Tang, and L. X. Pei. 2012. Fluid flow and heat mass transfer in membrane parallel-plates channels used for liquid desiccant air dehumidification. International Journal of Heat and Mass Transfer 55 (9–10):2571–80.
  • Huang, S. M., and L. Z. Zhang. 2013. Researches and trends in membrane-based liquid desiccant air dehumidification. Renewable and Sustainable Energy Reviews 28:425–40.
  • Hueffed, A. K., L. M. Chamra, and P. J. Mago. 2009. A simplified model of heat and mass transfer between air and falling-film desiccant in a parallel-plate dehumidifier. Journal of Heat Transfer 131 (5):052001:1-7.
  • Hwang, Y., R. Radermacher, A. A. Alili, and I. Kubo. 2008. Review of solar cooling technologies. HVAC&R Research 14 (3):507–28.
  • Ja, M. K., F. H. Choo, B. Li, A. Chakraborty, E. T. M. Dass, K. Zhao, and S. Dubey. 2017. Two-dimensional numerical analysis of membrane-based heat and mass cross-flow exchanger. Heat Transfer Engineering 38 (4):438–45.
  • Jain, S., and P. K. Bansal. 2007. Performance analysis of liquid desiccant dehumidification systems. International Journal of Refrigeration 30 (5):861–72.
  • Jain, S., P. L. Dhar, and S. C. Kaushik. 2000. Experimental studies on the dehumidifier and regenerator of a liquid desiccant cooling system. Applied Thermal Engineering 20 (3):253–67.
  • Incropera, F. P., D. P. DeWitt, T. L. Bergman, and A. S. Lavine. 2007. Fundamentals of heat and mass transfer. New York: John Wiley & Sons.
  • Kabeel, A. E., A. Khalil, S. S. Elsayed, and A. M. Alatyar. 2018. Dynamic behaviour simulation of a liquid desiccant dehumidification system. Energy 144:456–71.
  • Kashid, M. N., A. Renken, and L. Kiwi-Minsker. 2011. Gas–liquid and liquid–liquid mass transfer in microstructured reactors. Chemical Engineering Science 66 (17):3876–97.
  • Kassai, M., and C. J. Simonson. 2016. Experimental effectiveness investigation of liquid-to-air membrane energy exchangers under low heat capacity rates conditions. Experimental Heat Transfer 29 (4):445–55.
  • Khan, A. H. H., and S. M. Karuppayil. 2012. Fungal pollution of indoor environments and its management. Saudi Journal of Biological Sciences 19 (4):405–26.
  • Khayet, M. 2011. Membranes and theoretical modeling of membrane distillation: A review. Advances in Colloid and Interface Science 164 (1–2):56–88.
  • Kim, D. S., and C. A. Infante Ferreira. 2008. Solar refrigeration options – A state-of-the-art review. International Journal of Refrigeration 31 (1):3–15.
  • Koronaki, I. P., R. I. Christodoulaki, V. D. Papaefthimiou, and E. D. Rogdakis. 2014. Critical review of coupled heat and mass transfer models for a liquid desiccant adiabatic dehumidifier and regenerator. Advances in Building Energy Research 8 (2):117–36.
  • Law, K. Y. 2014. Definitions for hydrophilicity, hydrophobicity, and superhydrophobicity: Getting the basics right. The Journal of Physical Chemistry Letters 5 (4):686–8.
  • Lawson, K. W., and D. R. Lloyd. 1997. Membrane distillation. Journal of Membrane Science 124 (1):1–25.
  • Liu, X. H., Y. Jiang, and K. Y. Qu. 2007. Heat and mass transfer model of cross flow liquid desiccant air dehumidifier/regenerator. Energy Conversion and Management 48 (2):546–54.
  • Lof, G. O. G. 1955. Cooling with solar energy. Paper presented at the World Symposium on Applied Solar Energy, Vol. 2, Tucson, AZ, USA, 171–89.
  • Longo, G. A., and A. Gasparella. 2006. Experimental analysis on chemical dehumidification of air in a packed column by hygroscopic salt solution: Comparison between structured and random packings. HVAC&R Research 12 (S2):713–29.
  • Lowenstein, A. 2008. Review of liquid desiccant technology for HVAC applications. HVAC&R Research 14 (6):819–39.
  • Lu, H., L. Lu, Y. Luo, and R. Qi. 2016. Investigation on the dynamic characteristics of the counter-current flow for liquid desiccant dehumidification. Energy 101:229–38.
  • Lu, T., and F. Xiao. 2018. Lattice Boltzmann simulation of falling film flow under low Reynolds number. Heat Transfer Engineering 39 (17–18):1528–42.
  • Luo, Y., H. Yang, and L. Lu. 2014a. Dynamic and microscopic simulation of the counter-current flow in a liquid desiccant dehumidifier. Applied Energy 136:1018–25.
  • Luo, Y., H. Yang, and L. Lu. 2014b. Liquid desiccant dehumidifier: Development of a new performance predication model based on CFD. International Journal of Heat and Mass Transfer 69:408–16.
  • Luo, Y., H. Yang, L. Lu, and R. Qi. 2014. A review of the mathematical models for predicting the heat and mass transfer process in the liquid desiccant dehumidifier. Renewable and Sustainable Energy Reviews 31:587–99.
  • Mason, E. A., and A. P. Malinauskas. 1983. Gas transport in porous media: The dusty-gas model. Amsterdam: Elsevier Science Ltd.
  • Mei, L., and Y. J. Dai. 2008. A technical review on use of liquid-desiccant dehumidification for air-conditioning application. Renewable and Sustainable Energy Reviews 12 (3):662–89.
  • Mesquita, L. C. S., S. J. Harrison, and D. Thomey. 2006. Modeling of heat and mass transfer in parallel plate liquid-desiccant dehumidifiers. Solar Energy 80 (11):1475–82.
  • Moghaddam, D. G., A. Oghabi, G. Ge, R. W. Besant, and C. J. Simonson. 2013. Numerical model of a small-scale liquid-to-air membrane energy exchanger: Parametric study of membrane resistance and air side convective heat transfer coefficient. Applied Thermal Engineering 61 (2):245–58.
  • Mohaisen, A. K., and Z. Ma. 2015. Development and modelling of a solar assisted liquid desiccant dehumidification air-conditioning system. Building Simulation 8 (2):123–35.
  • Mohammad, A. T., S. B. Mat, K. Sopian, and A. A. Al-Abidi. 2016. Survey of the control strategy of liquid desiccant systems. Renewable and Sustainable Energy Reviews 58:250–8.
  • Mohammad, A. T., S. B. Mat, M. Y. Sulaiman, K. Sopian, and A. A. Al-Abidi. 2013a. Survey of hybrid liquid desiccant air conditioning systems. Renewable and Sustainable Energy Reviews 20:186–200.
  • Mohammad, A. T., S. B. Mat, M. Y. Sulaiman, K. Sopian, and A. A. Al-Abidi. 2013b. Survey of liquid desiccant dehumidification system based on integrated vapor compression technology for building applications. Energy and Buildings 62:1–14.
  • Mohammad, A. T., S. B. Mat, M. Y. Sulaiman, K. Sopian, and A. A. Al-Abidi. 2013c. Historical review of liquid desiccant evaporation cooling technology. Energy and Buildings 67:22–33.
  • Nada, S. A. 2017. Air cooling-dehumidification/desiccant regeneration processes by a falling liquid desiccant film on finned-tubes for different flow arrangements. International Journal of Thermal Sciences 113:10–9.
  • Naik, B. K., P. Muthukumar, and P. S. Kumar. 2018. A novel finite difference model coupled with recursive algorithm for analyzing heat and mass transfer processes in a cross flow dehumidifier/regenerator. International Journal of Thermal Sciences 131:1–13.
  • Nernst, W. 1904. Theorie der reaktionsgeschwindigkeit in heterogenen systemen. Zeitschrift Für Physikalische Chemie 47 (1):52–5.
  • Niu, X., F. Xiao, and Z. Ma. 2012. Investigation on capacity matching in liquid desiccant and heat pump hybrid air-conditioning systems. International Journal of Refrigeration 35 (1):160–70.
  • Oberg, V., and D. Y. Goswami. 1998. Experimental study of the heat and mass transfer in a packed bed liquid desiccant air dehumidifier. Journal of Solar Energy Engineering 120 (4):289–97.
  • Onda, K., H. Takeuchi, and Y. Okumoto. 1968. Mass transfer coefficients between gas and liquid phases in packed columns. Journal of Chemical Engineering of Japan 1 (1):56–62.
  • Ou, X., W. Cai, X. He, and Y. Wu. 2018. Dynamic model development of heat and mass transfer for a novel desiccant regeneration system in liquid desiccant dehumidification system. Applied Thermal Engineering 145:375–85.
  • Ou, X., W. Cai, X. He, D. Zhai, and X. Wang. 2018. Dynamic modeling and validation of a liquid desiccant cooling and dehumidification system. Energy and Buildings 163:44–57.
  • Ouyang, Y. W., and L. Z. Zhang. 2016. Conjugate heat and mass transfer in a skewed flow hollow fiber membrane bank used for liquid desiccant air dehumidification. International Journal of Heat and Mass Transfer 93:23–40.
  • Owens, D. K., and R. C. Wendt. 1969. Estimation of the surface free energy of polymers. Journal of Applied Polymer Science 13 (8):1741–7.
  • Patnaik, V., and H. Perez-Blanco. 1996. Roll waves in falling films: An approximate treatment of the velocity field. International Journal of Heat and Fluid Flow 17 (1):63–70.
  • Pietruschka, D., U. Eicker, M. Huber, and J. Schumacher. 2006. Experimental performance analysis and modelling of liquid desiccant cooling systems for air conditioning in residential buildings. International Journal of Refrigeration 29 (1):110–24.
  • Potnis, S. V., and T. G. Lenz. 1996. Dimensionless mass-transfer correlations for packed-bed liquid-desiccant contactors. Industrial & Engineering Chemistry Research 35 (11):4185–93.
  • Qi, R., C. Dong, and L. Z. Zhang. 2019. Wave-wise falling film in liquid desiccant dehumidification systems: Model development and time-series parameter analysis. International Journal of Heat and Mass Transfer 132:96–106.
  • Qi, R., L. Lu, and Y. Jiang. 2015. Investigation on the liquid contact angle and its influence for liquid desiccant dehumidification system. International Journal of Heat and Mass Transfer 88:210–7.
  • Qi, R., L. Lu, and F. Qin. 2014. Model development for the wetted area of falling film liquid desiccant air-conditioning system. International Journal of Heat and Mass Transfer 74:206–9.
  • Qi, R., L. Lu, H. Yang, and F. Qin. 2013a. Influence of plate surface temperature on the wetted area and system performance for falling film liquid desiccant regeneration system. International Journal of Heat and Mass Transfer 64:1003–13.
  • Qi, R., L. Lu, H. Yang, and F. Qin. 2013b. Investigation on wetted area and film thickness for falling film liquid desiccant regeneration system. Applied Energy 112:93–101.
  • Rafique, M. M., P. Gandhidasan, and H. M. S. Bahaidarah. 2016. Liquid desiccant materials and dehumidifiers – A review. Renewable and Sustainable Energy Reviews 56:179–95.
  • Rafique, M. M., P. Gandhidasan, S. Rehman, and L. M. Al-Hadhrami. 2015. A review on desiccant based evaporative cooling systems. Renewable and Sustainable Energy Reviews 45:145–59.
  • Rahmah, A. S., M. M. Elsayed, and N. M. Al-Najem. 2000. A numerical investigation for the heat and mass transfer between parallel flow of air and desiccant falling film in a fin-tube arrangement. HVAC&R Research 6 (4):307–23.
  • Ren, C. Q. 2008. Effectiveness–NTU relation for packed bed liquid desiccant–air contact systems with a double film model for heat and mass transfer. International Journal of Heat and Mass Transfer 51 (7–8):1793–803.
  • Ren, H., G. Chen, J. Luo, and S. Zhang. 2016. Vapor pressure above concentrated aqueous solution of lithium bromide at subzero temperatures. International Journal of Refrigeration 67:167–73.
  • Ren, H., Z. Ma, and S. Gschwander. 2019. Characterisation and evaluation of a new phase change enhanced working solution for liquid desiccant cooling systems. Applied Thermal Engineering 150:1197–205.
  • Ren, H., Z. Ma, W. Lin, S. Wang, and W. Li. 2019. Optimal design and size of a desiccant cooling system with onsite energy generation and thermal storage using a multilayer perceptron neural network and a genetic algorithm. Energy Conversion and Management 180:598–608.
  • Ren, H., Z. Ma, J. Liu, X. Gong, and W. Li. 2019. A review of heat and mass transfer improvement techniques for dehumidifiers and regenerators of liquid desiccant cooling systems. Applied Thermal Engineering 162:114271.
  • Sarbu, I., and C. Sebarchievici. 2013. Review of solar refrigeration and cooling systems. Energy and Buildings 67:286–97.
  • Schlünder, E. U. 1977. On the mechanism of mass transfer in heterogeneous systems-in particular in fixed beds, fluidized beds and on bubble trays. Chemical Engineering Science 32 (8):845–51.
  • Seyed-Ahmadi, M., B. Erb, C. J. Simonson, and R. W. Besant. 2009. Transient behavior of run-around heat and moisture exchanger system. Part І: Model formulation and verification. International Journal of Heat and Mass Transfer 52 (25–26):6000–11.
  • Shehadi, M. 2018. Review of humidity control technologies in buildings. Journal of Building Engineering 19:539–51.
  • Shi, L., H. Zhang, Z. Li, X. Man, Y. Wu, C. Zheng, and J. Liu. 2018. Analysis of moisture buffering effect of straw-based board in civil defence shelters by field measurements and numerical simulations. Building and Environment 143:366–77.
  • Shirazi, M. M. A., A. Kargari, A. F. Ismail, and T. Matsuura. 2016. Computational fluid dynamic (CFD) opportunities applied to the membrane distillation process: State-of-the-art and Perspectives. Desalination 377:73–90.
  • Shukla, D. L., and K. V. Modi. 2017. A technical review on regeneration of liquid desiccant using solar energy. Renewable and Sustainable Energy Reviews 78:517–29.
  • Snustad, I., I. T. Røe, A. Brunsvold, Å. Ervik, J. He, and Z. Zhang. 2018. A review on wetting and water condensation – Perspectives for CO2 condensation. Advances in Colloid and Interface Science 256:291–304.
  • Stevens, D. I., J. E. Braun, and S. A. Klein. 1989. An effectiveness model of liquid-desiccant system heat/mass exchangers. Solar Energy 42 (6):449–55.
  • Su, W., W. Li, B. Sun, and X. Zhang. 2019. Experimental study and correlations for heat and mass transfer coefficients in the dehumidifier of a frost-free heat pump system. International Journal of Heat and Mass Transfer 131:450–62.
  • Taylor, R., and R. Krishna. 1993. Multicomponent mass transfer. New York: John Wiley & Sons.
  • Thanedgunbaworn, R., R. Jiraratananon, and M. H. Nguyen. 2007. Shell-side mass transfer of hollow fibre modules in osmotic distillation process. Journal of Membrane Science 290 (1–2):105–13.
  • Tsai, R. E. 2010. Mass transfer area of structured packing. Doctoral diss., The University of Texas at Austin, Austin, TX, USA.
  • Vali, A., G. Ge, R. W. Besant, and C. J. Simonson. 2015. Numerical modeling of fluid flow and coupled heat and mass transfer in a counter-cross-flow parallel-plate liquid-to-air membrane energy exchanger. International Journal of Heat and Mass Transfer 89:1258–76.
  • Van Elk, E. P., M. C. Knaap, and G. F. Versteeg. 2007. Application of the penetration theory for gas–liquid mass transfer without liquid bulk: Differences with systems with a bulk. Chemical Engineering Research and Design 85 (4):516–24.
  • Varela, R. J., N. Giannetti, S. Yamaguchi, K. Saito, X. M. Wang, and H. Nakayama. 2018. Experimental investigation of the wetting characteristics of an aqueous ionic liquid solution on an aluminum fin-tube substrate. International Journal of Refrigeration 88:472–82.
  • Wang, C., Z. Xu, C. Lai, and X. Sun. 2018. Beyond the standard two-film theory: Computational fluid dynamics simulations for carbon dioxide capture in a wetted wall column. Chemical Engineering Science 184:103–10.
  • Waugaman, D. G., A. Kini, and C. F. Kettleborough. 1993. A review of desiccant cooling systems. Journal of Energy Resources Technology 115 (1):1–8.
  • Wen, T., L. Lu, C. Dong, and Y. Luo. 2018. Development and experimental study of a novel plate dehumidifier made of anodized aluminum. Energy 144:169–77.
  • Wen, T., and L. Lu. 2019a. A review of correlations and enhancement approaches for heat and mass transfer in liquid desiccant dehumidification system. Applied Energy 239:757–84.
  • Wen, T., and L. Lu. 2019b. Numerical and experimental study on internally cooled liquid desiccant dehumidification concerning film shrinkage shape and vapor condensation. International Journal of Thermal Sciences 136:316–27.
  • Wen, T., Y. Luo, W. He, W. Gang, and L. Sheng. 2019. Development of a novel quasi-3D model to investigate the performance of a falling film dehumidifier with CFD technology. International Journal of Heat and Mass Transfer 132:431–42.
  • Wen, T., Y. Luo, and L. Lu. 2019. A novel 3D simulation model for investigating liquid desiccant dehumidification performance based on CFD technology. Applied Energy 240:486–98.
  • Wijmans, J. G., and R. W. Baker. 1995. The solution-diffusion model: A review. Journal of Membrane Science 107 (1–2):1–21.
  • Woods, J. 2014. Membrane processes for heating, ventilation, and air conditioning. Renewable and Sustainable Energy Reviews 33:290–304.
  • Woods, J., and E. Kozubal. 2013. A desiccant-enhanced evaporative air conditioner: Numerical model and experiments. Energy Conversion and Management 65:208–20.
  • Woods, J., and E. Kozubal. 2018. On the importance of the heat and mass transfer resistances in internally-cooled liquid desiccant dehumidifiers and regenerators. International Journal of Heat and Mass Transfer 122:324–40.
  • Woods, J., J. Pellegrino, E. Kozubal, S. Slayzak, and J. Burch. 2009. Modeling of a membrane-based absorption heat pump. Journal of Membrane Science 337 (1–2):113–24.
  • Wu, H. 2014. Effect of interfacial phenomena on mass transfer performance of an absorber packed closely with cylindrical packing. Chemical Engineering Journal 240:74–81.
  • Yin, Y., J. Qian, and X. Zhang. 2014. Recent advancements in liquid desiccant dehumidification technology. Renewable and Sustainable Energy Reviews 31:38–52.
  • Yin, Y., X. Zhang, D. Peng, and X. Li. 2009. Model validation and case study on internally cooled/heated dehumidifier/regenerator of liquid desiccant systems. International Journal of Thermal Sciences 48 (8):1664–71.
  • Yin, Y., and X. Zhang. 2008. A new method for determining coupled heat and mass transfer coefficients between air and liquid desiccant. International Journal of Heat and Mass Transfer 51 (13-14):3287–97.
  • Yuan, Z., and K. E. Herold. 2005. Thermodynamic properties of aqueous lithium bromide using a multiproperty free energy correlation. HVAC&R Research 11 (3):377–93.
  • Żenkiewicz, M. 2007. Methods for the calculation of surface free energy of solids. Journal of Achievements in Materials and Manufacturing Engineering 24 (1):137–45.
  • Zhang, F., Z. Zhang, and J. Geng. 2005. Study on shrinkage characteristics of heated falling liquid films. AIChE Journal 51 (11):2899–907.
  • Zhang, L. Z., and S. M. Huang. 2011. Coupled heat and mass transfer in a counter flow hollow fiber membrane module for air humidification. International Journal of Heat and Mass Transfer 54 (5–6):1055–63.
  • Zhang, L. Z., S. M. Huang, J. H. Chi, and L. X. Pei. 2012. Conjugate heat and mass transfer in a hollow fiber membrane module for liquid desiccant air dehumidification: A free surface model approach. International Journal of Heat and Mass Transfer 55 (13–14):3789–99.
  • Zhang, L. Z., S. M. Huang, and L. X. Pei. 2012. Conjugate heat and mass transfer in a cross-flow hollow fiber membrane contactor for liquid desiccant air dehumidification. International Journal of Heat and Mass Transfer 55 (25–26):8061–72.
  • Zhang, L. Z. 2012. Coupled heat and mass transfer in an application-scale cross-flow hollow fiber membrane module for air humidification. International Journal of Heat and Mass Transfer 55 (21–22):5861–9.
  • Zhang, L. Z. 2014. A lattice Boltzmann simulation of mass transport through composite membranes. AIChE Journal 60 (11):3925–38.
  • Zhang, L. Z., S. M. Huang, and W. B. Zhang. 2013. Turbulent heat and mass transfer across a hollow fiber membrane bundle considering interactions between neighboring fibers. International Journal of Heat and Mass Transfer 64:162–72.
  • Zhang, L. Z., R. R. Cai, and J. C. Xu. 2016. Moisture transport through asymmetric porous membranes with finger-like holes for indoor humidity control: A lattice Boltzmann simulation approach. Indoor and Built Environment 25 (1):151–68.
  • Zhang, F., Y. Yin, and X. Zhang. 2017. Performance analysis of a novel liquid desiccant evaporative cooling fresh air conditioning system with solution recirculation. Building and Environment 117:218–29.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.