185
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Influences of radiation on the prediction of thermal environment in a transient buoyancy-driven natural ventilation classroom

&

References

  • Air-Conditioning Engineers. 2013. 2013 ASHRAE handbook: fundamentals. SI edition. Atlanta, GA: ASHRAE.
  • Ansys Fluent 16.0. 2015. Fluent user's guide, Canonsburg PA: ANSYS Inc.
  • ASHARE Standard 55. 2010. Standard 55-2010, thermal environmental conditions for human occupancy. Atlanta: ASHARE. Inc.
  • Bolster, D., A. Maillard, and P. Linden. 2008. The response of natural displacement ventilation to time-varying heat sources. Energy and Buildings 40 (12):2099–110. doi:10.1016/j.enbuild.2008.06.001
  • Bower, D. J., C. P. Caulfield, S. D. Fitzgerald, and A. W. Woods. 2008. Transient ventilation dynamics following a change in strength of a point source of heat. Journal of Fluid Mechanics 614:15–37. doi:10.1017/S0022112008003479
  • Chen, H. J., B. Moshfegh, and M. Cehlin. 2013. Investigation on the flow and thermal behavior of impinging jet ventilation systems in an office with different heat loads. Building and Environment 59:127–44. doi:10.1016/j.buildenv.2012.08.014
  • Chen, Q. 2009. Ventilation performance prediction for buildings: A method overview and recent applications. Building and Environment 44 (4):848–58. doi:10.1016/j.buildenv.2008.05.025
  • Chow, K., and A. E. Holdø. 2010. On the influence of boundary conditions and thermal radiation on predictive accuracy in numerical simulations of indoor ventilation. Building and Environment 45 (2):437–44. doi:10.1016/j.buildenv.2009.06.021
  • Chu, C. R., and S. Wu. 2018. A transient transport model for gaseous pollutants in naturally-ventilated partitioned buildings. Building Simulation 11 (2):305–13. doi:10.1007/s12273-017-0390-z
  • Cook, M. J., Y. Ji, and G. R. Hunt. 2003. CFD modelling of natural ventilation: Combined wind and buoyancy forces. International Journal of Ventilation 1 (3):169–79. doi:10.1080/14733315.2003.11683632
  • Craven, B. A., and G. S. Settles. 2006. A computational and experimental investigation of the human thermal plume. Journal of Fluids Engineering 128:1250–8.
  • Fan, J., and Q. Zhou. 2019. A review about thermal comfort in aircraft. Journal of Thermal Science 28 (2):169–83. doi:10.1007/s11630-018-1073-5
  • Fanger, P. O., A. K. Melikov, H. Hanzawa, and J. Ring. 1988. Air turbulence and sensation of draught. Energy and Buildings 12 (1):21–39. doi:10.1016/0378-7788(88)90053-9
  • Fanger, P. O., and J. Toftum. 2002. Extension of the PMV model to non-air-conditioned buildings in warm climates. Energy and Buildings 34:533–6. doi:10.1016/S0378-7788(02)00003-8
  • Fitzgerald, S. D., and A. W. Woods. 2010. Transient natural ventilation of a space with localised heating. Building and Environment 45 (12):2778–89. doi:10.1016/j.buildenv.2010.06.007
  • Gladstone, C., and A. W. Woods. 2001. On buoyancy-driven natural ventilation of a room with a heated floor. Journal of Fluid Mechanics 441:293–314. doi:10.1017/S0022112001004876
  • Hussain, S., and P. H. Oosthuizen. 2012. Numerical investigations of buoyancy-driven natural ventilation in a simple atrium building and its effect on the thermal comfort conditions. Applied Thermal Engineering 40:358–72. doi:10.1016/j.applthermaleng.2012.02.025
  • ISO 7730. 2005. Ergonomics of the thermal environment. Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. International Standardisation Organisation, Geneva.
  • Jiang, P., Z. Wang, and R. Xu. 2018. A modified buoyancy effect correction method on turbulent convection heat transfer of supercritical pressure fluid based on RANS model. International Journal of Heat and Mass Transfer 127:257–67. doi:10.1016/j.ijheatmasstransfer.2018.07.042
  • Jones, W. P., and B. E. Launder. 1973. The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence. International Journal of Heat and Mass Transfer 16 (6):1119–30. doi:10.1016/0017-9310(73)90125-7
  • Kaye, N. B., and G. R. Hunt. 2004. Time-dependent flows in an emptying filling box. Journal of Fluid Mechanics 520:135–56. doi:10.1017/S0022112004001156
  • Kaye, N. B., Y. Ji, and M. J. Cook. 2009. Numerical simulation of transient flow development in a naturally ventilated room. Building and Environment 44 (5):889–97. doi:10.1016/j.buildenv.2008.06.016
  • Li, X., Y. Yuan, and J. Tu. 2018. Evaluation of models and methods to simulate thermal radiation in indoor spaces. Building and Environment 144:259–67. doi:10.1016/j.buildenv.2018.08.033
  • Li, Y., and X. Li. 2015. Natural ventilation potential of high-rise residential buildings in northern China using coupling thermal and airflow simulations. Building Simulation 8 (1):51–64. doi:10.1007/s12273-014-0188-1
  • Li, Y., L. Fuchs, and F. Sandberg. 1993. Numerical prediction of airflow and heat-radiation interaction in a room with displacement ventilation. Energy and Buildings 20 (1):27–43. doi:10.1016/0378-7788(93)90036-T
  • Mateus, N. M., G. N. Simões, C. Lúcio, and G. C. Graça. 2016. Comparison of measured and simulated performance of natural displacement ventilation systems for classrooms. Energy and Buildings 133:185–96. doi:10.1016/j.enbuild.2016.09.057
  • Mathur, S. R., and J. Y. Murthy. 1999. Coupled ordinates method for multigrid acceleration of radiation calculations. Journal of Thermophysics and Heat Transfer 13 (4):467–73. doi:10.2514/2.6485
  • Menchaca-Brandan, M.A. 2012. Study of airflow and thermal stratification in naturally ventilated rooms. PhD. Dissertation., Massachusetts Institute of Technology, USA. http://dspace.mit.edu/handle/1721.1/7582.
  • Menchaca-Brandan, M. A., F. A. Espinosa, and L. R. Glicksman. 2017. The influence of radiation heat transfer on the prediction of air flows in rooms under natural ventilation. Energy and Buildings 138:530–8. doi:10.1016/j.enbuild.2016.12.037
  • Meng, X., Y. Wang, T. Liu, X. Xin, T. Cao, and J. Zhao. 2016. Influence of radiation on predictive accuracy in numerical simulations of the thermal environment in industrial buildings with buoyancy-driven natural ventilation. Applied Thermal Engineering 96:473–80. doi:10.1016/j.applthermaleng.2015.11.105
  • Patankar, S. V., and D. B. Spalding. 1972. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Internal Journal of Heat Mass Transfer 15 (10):1787–806. doi:10.1016/0017-9310(72)90054-3
  • Spentzou, E., M. J. Cook, and S. Emmitt. 2017. Natural ventilation strategies for indoor thermal comfort in Mediterranean apartments. Building Simulation 11:1–17. doi:10.1007/s12273-017-0380-1
  • Srebric, J., V. Vukovic, G. He, and X. Yang. 2008. CFD boundary conditions for contaminant dispersion, heat transfer and airflow simulations around human occupants in indoor environment. Building and Environment 43 (3):294–303. doi:10.1016/j.buildenv.2006.03.023
  • Wang, Y., X. Meng, X. Yang, and J. Liu. 2014. Influence of convection and radiation on the thermal environment in an industrial building with buoyancy-driven natural ventilation. Energy and Buildings 75:394–401. doi:10.1016/j.enbuild.2014.02.031
  • Wang, Z., F. Wang, Z. Ma, M. Bai, and S. Liu. 2018. Experimental investigation and evaluation of the performance of air-source heat pumps for indoor thermal comfort control. Journal of Mechanical Science and Technology 32 (3):1437–47. doi:10.1007/s12206-018-0248-z
  • Yang, X., G. Wang, K. Zhong, and Y. Kang. 2012. Transient pollutant flushing of buoyancy-driven natural ventilation. Building Simulation 5 (2):147–55. doi:10.1007/s12273-012-0077-4
  • Yang, X., K. Zhong, H. Zhu, and Y. Kang. 2014. Experimental investigation on transient natural ventilation driven by thermal buoyancy. Building and Environment 77:29–39. doi:10.1016/j.buildenv.2014.03.013
  • Yang, X., K. Zhong, Y. Kang, and T. Tao. 2015. Numerical investigation on the airflow characteristics and thermal comfort in buoyancy-driven natural ventilation rooms. Energy and Buildings 109:255–66. doi:10.1016/j.enbuild.2015.09.071
  • Yang, X., Y. Kang, and K. Zhong. 2013. Theoretical modeling of unsteady buoyancy-driven natural ventilation. HVAC & R Research 19:148–58.
  • Ye, X., H. Zhu, Y. Kang, and K. Zhong. 2016. Heating energy consumption of impinging jet ventilation and mixing ventilation in large-height spaces: A comparison study. Energy and Buildings 130:697–708. doi:10.1016/j.enbuild.2016.08.055
  • Zhuang, J., Q. Jiang, and Y. Diao. 2019. Non-uniform three-layer models to predict transient flows in buoyancy-driven natural ventilation with a localized heat source. Science and Technology for the Built Environment 25 (5):643–55. doi:10.1080/23744731.2018.1556054
  • Zukowska, D., A. Melikov, and Z. Popiolek. 2012a. Impact of geometry of a sedentary occupant simulator on the generated thermal plume: Experimental investigation. HVAC&R Research 18:795–811.
  • Zukowska, D., A. Melikov, and Z. Popiolek. 2012b. Impact of personal factors and furniture arrangement on the thermal plume above a sitting occupant. Building and Environment 49:104–16. doi:10.1016/j.buildenv.2011.09.015

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.