282
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Development of reduced order thermal dynamic models for building load flexibility of an electrically-heated high temperature thermal storage device

, , &

References

  • American Society of Heating Refrigerating and Air-Conditioning Engineers. 2009. Ashrae handbook: Fundamentals. Atlanta, Ga: Ashrae.
  • Athienitis, A. K., and M. Santamouris. 2002. Thermal analysis and design of passive solar buildings. London, UK: James & James.
  • Bacher, P., and H. Madsen. 2011. Identifying suitable models for the heat dynamics of buildings. Energy and Buildings 43 (7):1511–22. doi:10.1016/j.enbuild.2011.02.005
  • Baetens, R., R. De Connick, F. Jorissen, D. Picard, L. Helsen, and D. Saelens. 2015. OPENIDEAS - An open framework for integrated district energy simulations. Proceedings of the 14th International Building Simulation Conference.
  • Bedouani, B. Y., B. Labrecque, M. Parent, and A. Legault. 2001. Central electric thermal storage (ETS) feasibility for residential applications: Part 2. Techno-economic study. International Journal of Energy Research 25 (1):73–83. doi:10.1002/1099-114X(200101)25:1<73::AID-ER611>3.0.CO;2-K
  • Berthou, T., P. Stabat, R. Salvazet, and D. Marchio. 2014. Development and validation of a gray box model to predict thermal behavior of occupied office buildings. Energy and Buildings 74 (0):91–100. doi:10.1016/j.enbuild.2014.01.038
  • Canadian Meteorological Service (Environment Canada). 2019. High Resolution Deterministic Prediction System. Retrieved September 20, 2006, from https://weather.gc.ca/grib/grib2_HRDPS_HR_e.html
  • Candanedo, J. A., V. R. Dehkordi, and P. Lopez. 2013. A control-oriented simplified building modelling strategy. Proceedings of the 13th Conference of International Building Performance Simulation Association, 3682–9. Chambery, France.
  • Cigler, J., P. Tomáško, and J. Široký. 2013. BuildingLAB: A tool to analyze performance of model predictive controllers for buildings. Energy and Buildings 57:34–41. doi:10.1016/j.enbuild.2012.10.042
  • Cooke, W. B. H., R. H. S. Hardy, and M. T. Sulatisky. 1980. Thermal energy storage in forced-air electric furnaces. IEEE Transactions on Industry Applications IA-16:127–133.
  • Date, J. A., J. A. Candanedo, A. K. Athienitis, and K. Lavigne. 2018. Control-oriented modeling of an air- based electric thermal energy storage device. Proceedings of the ASHRAE Winter Conference.
  • Date, J., J. A. Candanedo, and A. K. Athienitis. 2016. Control-oriented modelling of thermal zones in a house: A multi-level approach. Proceedings of the 4th International High Performance Buildings Conference at Purdue, 1–10.
  • Deng, K., S. Goyal, P. Barooah, and P. G. Mehta. 2014. Structure-preserving model reduction of nonlinear building thermal models. Automatica 50 (4):1188–95. doi:10.1016/j.automatica.2014.02.009
  • Denholm, P., M. O’Connell, G. Brinkman, and J. Jorgenson. 2015. Overgeneration from solar energy in California. A field guide to the duck chart. (November). 10.2172/1226167.
  • Fux, S. F., A. Ashouri, M. J. Benz, and L. Guzzella. 2014. EKF based self-adaptive thermal model for a passive house. Energy and Buildings 68 (PART C):811–7. doi:10.1016/j.enbuild.2012.06.016
  • Gunay, H. B., J. Bursill, B. Huchuk, W. O'Brien, and I. Beausoleil-Morrison. 2014. Shortest-prediction-horizon model-based predictive control for individual offices. Building and Environment 82 (February 2016):408–19. doi:10.1016/j.buildenv.2014.09.011
  • Houda, Z., R. Sylvain, S. Frédéric, and Y. O. Rouis. 2015. Benchmark of optimization techniques for identification of buildings thermal parameters. Proceedings of the Building Simulation Conference, (April), 1–8.
  • Inderfurth, A., C. Nytsch-Geusen, and C. R. Tugores., 2015. Parameter identification for low-order building models using optimization strategies. Proceedings of the 14th Building Simulation Conference.
  • Jensen, S. Ø., A. Marszal-Pomianowska, R. Lollini, W. Pasut, A. Knotzer, P. Engelmann, A. Stafford, and G. Reynders. 2017. IEA EBC Annex 67 Energy Flexible Buildings. Energy and Buildings 155:25–34. doi:10.1016/j.enbuild.2017.08.044
  • Junker, R. G., K. B. Lindberg, G. Reynders, R. A. Lopes, R. Relan, A. G. Azar, and H. Madsen. 2018. Characterizing the energy flexibility of buildings and districts. Applied Energy 225 (February):175–82. doi:10.1016/j.apenergy.2018.05.037
  • Kim, D., and J. E. Braun. 2012. Reduced-order building modeling for application to model-based predictive control. Proceedings of the Fifth National Conference of IBPSA-USA, 1, 2.
  • Kim, D., and J. E. Braun. 2015. A general approach for generating reduced-order models for large multi-zone buildings. Journal of Building Performance Simulation 8 (6):435–48. doi:10.1080/19401493.2014.977952
  • Kircher, K. J., and K. M. Zhang. 2015. On the lumped capacitance approximation accuracy in RC network building models. Energy and Buildings 108:454–62. doi:10.1016/j.enbuild.2015.09.053
  • Kummert, M., P. André, and A. Argiriou. 2006. Comparing control strategies using experimental and simulation results: Methodology and application to heating control of passive solar buildings. HVAC and R Research 12 (3):715–737.
  • Kummert, M., P. André, and J. Nicolas. 2001. Optimal heating control in a passive solar commercial building. Solar Energy 69 (Supple0):103–16. doi:10.1016/S0038-092X(01)00038-X
  • Lavigne, K. 2006. Etude de Mediums De Stockage Pour un Appareil de Stockage Thermique Hybride. MASc. diss., Universite de Sherbrooke.
  • Lienhard, J. H., and V. J. H. Lienhard. 1986. A heat transfer textbook. Journal of Heat Transfer 108 (1):198. doi:10.1115/1.3246887
  • Lin, Y., T. Middelkoop, and P. Barooah. 2012. Issues in identification of control-oriented thermal models of zones in multi-zone buildings. Proceedings of the 51st IEEE Conference on Decision and Control, 6932–6937. doi:10.1109/CDC.2012.6425958
  • Liu, M., and P. Heiselberg. 2019. Energy flexibility of a nearly zero-energy building with weather predictive control on a convective building energy system and evaluated with different metrics. Applied Energy 233–234 (October 2018):764–75. doi:10.1016/j.apenergy.2018.10.070
  • Moffet, M. A., F. Sirois, G. Joos, and A. Moreau. 2012. Central electric thermal storage (ETS) heating systems: Impact on customer and distribution system. Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference. doi:10.1109/TDC.2012.6281536
  • Moreau, A., A, M., and Steffes T. 2009. Managing the Heating Demand in Institutional Buildings with an Innovative Thermal Storage System. Proceedings of Effstock 2009 – Thermal Energy Storage for Energy Efficiency and Sustainability. Stockholm, Sweden.
  • Moroşan, P.-D., R. Bourdais, D. Dumur, and J. Buisson. 2010. Building temperature regulation using a distributed model predictive control. Energy and Buildings 42 (9):1445–52. doi:10.1016/j.enbuild.2010.03.014
  • Oldewurtel, F., A. Parisio, C. N. Jones, D. Gyalistras, M. Gwerder, V. Stauch, B. Lehmann, M. Morari. 2012. Use of model predictive control and weather forecasts for energy efficient building climate control. Energy and Buildings 45:15–27. doi:10.1016/j.enbuild.2011.09.022
  • Picard, D., J. Drgoňa, M. Kvasnica, and L. Helsen. 2017. Impact of the controller model complexity on model predictive control performance for buildings. Energy and Buildings 152:739–51. doi:10.1016/j.enbuild.2017.07.027
  • Picard, D., M. J. Sourbron, and F. Jorissen. 2016. Comparison of model predictive control performance using grey-box and white-box controller models of a multi-zone office building. International Compressor Engineering, Refrigeration and Air Conditioning, and High Performance Buildings Conferences, 1–10.
  • Reynders, G., J. Diriken, and D. Saelens. 2014. Quality of grey-box models and identified parameters as function of the accuracy of input and observation signals. Energy and Buildings 82:263–74. doi:10.1016/j.enbuild.2014.07.025
  • Reynders, G., R. Amaral Lopes, A. Marszal-Pomianowska, D. Aelenei, J. Martins, and D. Saelens. 2018. Energy flexible buildings: An evaluation of definitions and quantification methodologies applied to thermal storage. Energy and Buildings 166:372–90. doi:10.1016/j.enbuild.2018.02.040
  • Reynders, G., J. Diriken, and D. Saelens. 2017. Generic characterization method for energy flexibility: Applied to structural thermal storage in residential buildings. Applied Energy 198:192–202. doi:10.1016/j.apenergy.2017.04.061
  • Syed, A. M. 2011. Electric thermal storage option for nova scotia power customers: A case study of a typical electrically heated nova scotia house. Energy Engineering 108 (6):69–79. doi:10.1080/01998595.2011.10412169
  • Touretzky, C. R., and M. Baldea. 2014. Integrating scheduling and control for economic MPC of buildings with energy storage. Journal of Process Control 24 (8):1292–300. doi:10.1016/j.jprocont.2014.04.015
  • Wang, S., and X. Xu. 2006. Simplified building model for transient thermal performance estimation using GA-based parameter identification. International Journal of Thermal Sciences 45 (4):419–32. doi:10.1016/j.ijthermalsci.2005.06.009
  • Wong, S., G. Gaudet, and L.-P. Proulx. 2017. Capturing wind with thermal energy storage – summerside’s smart grid approach. IEEE Power and Energy Technology Systems Journal 4 (4), 115–124. doi:10.1109/JPETS.2017.2754139
  • Wong, S., and J. P. Pinard. 2017. Opportunities for smart electric Thermal storage on electric grids with renewable energy. IEEE Transactions on Smart Grid 8 (2):1014–1022. doi:10.1109/TSG.2016.2526636.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.