101
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Numerical simulation of the effects of secondary roughness in the form of extension to arrays of terraced houses on pedestrian wind

ORCID Icon, , , &

References

  • Abd Razak, A., A. Hagishima, N. Ikegaya, and J. Tanimoto. 2013. Analysis of airflow over building arrays for assessment of urban wind environment. Building and Environment. 59:56–65. doi:10.1016/j.buildenv.2012.08.007
  • Boppana, V. B. L., Z. T. Xie, and I. P. Castro. 2010. Large-eddy simulation of dispersion from surface sources in arrays of obstacles. Boundary-Layer Meteorology 135 (3):433–54. doi:10.1007/s10546-010-9489-9
  • Chan, A. T., W. T. W. Au, and E. S. P. So. 2003. Strategic guidelines for street canyon geometry to achieve sustainable street air quality—Part II: Multiple canopies and canyons. Atmospheric Environment. 37 (20):2761–72. doi:10.1016/S1352-2310(03)00252-8
  • Chen, L., J. Hang, M. Sandberg, L. Claesson, S. D. Sabatino, and H. Wigo. 2017. The impacts of building height variations and building packing densities on flow adjustment and city breathability in idealized urban models. Building and Environment. 118:344–61. doi:10.1016/j.buildenv.2017.03.042
  • Chung, L. P., M. H. Ahmad, D. R. Ossen, and M. Hamid. 2015. Effective solar chimney cross section ventilation performance in Malaysia terraced house. Procedia—Social and Behavioral Sciences 179:276–89. doi:10.1016/j.sbspro.2015.02.431
  • Claus, J., O. Coceal, T. G. Thomas, S. Branford, S. E. Belcher, and I. P. Castro. 2012. Wind-direction effects on urban-type flows. Boundary-Layer Meteorology 142 (2):265–87. doi:10.1007/s10546-011-9667-4
  • Coceal, O., E. V. Goulart, S. Branford, T. Glyn Thomas, and S. E. Belcher. 2014. Flow structure and near-field dispersion in arrays of building-like obstacles. Journal of Wind Engineering and Industrial Aerodynamics. 125:52–68. doi:10.1016/j.jweia.2013.11.013
  • Cui, Z. Q., X. M. Cai, and C. J. Baker. 2004. Large-eddy simulation of turbulent flow in a street canyon. Quarterly Journal of the Royal Meteorological Society 130 (599):1373–94. doi:10.1256/qj.02.150
  • Du, Y., C. M. Mak, J. Liu, Q. Xia, J. Niu, and K. C. S. Kwok. 2017. Effects of lift-up design on pedestrian level wind comfort in different building configurations under three wind directions. Building and Environment. 117:84–99. doi:10.1016/j.buildenv.2017.03.001
  • Franke, J., and A. Baklanov. 2007. Best practice guideline for the CFD simulation of flows in the urban environment. In: Franke, J., Hellsten, A., Schlünzen, H., Carissimo, B., (Eds.), COST Action 732: Quality Assurance and Improvement of Microscale Meteorological Models. Brussels: COST Office.
  • Hanna, S. R., S. Tehranian, B. Carissimo, R. W. Macdonald, and R. Lohner. 2002. Comparisons of model simulations with observations of mean flow and turbulence within simple obstacle arrays. Atmospheric Environment. 36 (32):5067–79. doi:10.1016/S1352-2310(02)00566-6
  • Ikegaya, N., C. Hirose, A. Hagishima, and J. Tanimoto. 2016. Effect of turbulent flow on wall pressure coefficients of block arrays within urban boundary layer. Building and Environment. 100:28–39. doi:10.1016/j.buildenv.2016.02.005
  • Jasak, H., H. G. Weller, and A. D. Gosman. 1999. High resolution NVD differencing scheme for arbitrarily unstructured meshes. International Journal for Numerical Methods in Fluids 31 (2):431–49. doi:10.1002/(SICI)1097-0363(19990930)31:2<431::AID-FLD884>3.0.CO;2-T
  • Kanda, M. 2006. Large-eddy simulations on the effects of surface geometry of building arrays on turbulent organized structures. Boundary-Layer Meteorology 118 (1):151–68. doi:10.1007/s10546-005-5294-2
  • Kanda, M., R. Moriwaki, and F. Kasamatsu. 2004. Large-eddy simulation of turbulent organized structures within and above explicitly resolved cube arrays. Boundary-Layer Meteorology 112 (2):343–68. doi:10.1023/B:BOUN.0000027909.40439.7c
  • Kasim, N. F. M., S. A. Zaki, M. S. M. Ali, N. Ikegaya, and A. A. Razak. 2016. Computational study on the influence of different opening position on wind-induced natural ventilation in urban building of cubical array. Procedia Engineering 169:256–63. doi:10.1016/j.proeng.2016.10.031
  • Kikumoto, H., and R. A. Ooka. 2012. Study on air pollutant dispersion with bimolecular reactions in urban street canyons using large-eddy simulations. Journal of Wind Engineering and Industrial Aerodynamics. 104–106:516–22. doi:10.1016/j.jweia.2012.03.001
  • Kono, T., T. Tamura, and Y. Ashie. 2010. Numerical investigations of mean winds within canopies of regularly arrayed cubical buildings under neutral stability conditions. Boundary-Layer Meteorology 134 (1):131–55. doi:10.1007/s10546-009-9434-y
  • Kubota, T., and S. Ahmad. 2005. Analysis of wind flow in residential areas of Johor Bahru City. Journal of Asian Architecture and Building Engineering 4 (1):209–16. doi:10.3130/jaabe.4.209
  • Michioka, T., A. Sato, H. Takimoto, and M. Kanda. 2011. Large-eddy simulation for the mechanism of pollutant removal from a two-dimensional street canyon. Boundary-Layer Meteorology 138 (2):195–213. doi:10.1007/s10546-010-9556-2
  • Mohamad, M. F., A. Hagishima, N. Ikegaya, J. Tanimoto, and A. R. Omar. 2015. Aerodynamic effect of overhang on a turbulent flow field within a two-dimensional street canyon. Engineering Sciences Reports Kyushu University 37 (1):1–7.
  • Mohamad, M. F., A. Hagishima, J. Tanimoto, N. Ikegaya, and A. R. Omar. 2014. On the effect of various design factors on wind-induced natural ventilation of residential buildings in Malaysia. In: Proceedings of IBPSA Asia Conference. International Building Performance Simulation Association, 139–46.
  • Mohammad, A. F., S. A. Zaki, N. Ikegaya, A. Hagishima, and M. S. M. Ali. 2018. A new semi-empirical model for estimating the drag coefficient of the vertical random staggered arrays using LES. Journal of Wind Engineering and Industrial Aerodynamics 180:191–200. doi:10.1016/j.jweia.2018.08.003
  • Mohammad, A. F., S. A. Zaki, M. S. M. Ali, H. Aya, A. A. Razak, M. Shirakashi, and N. Arai. 2015. Large eddy simulation of wind pressure distribution on heterogeneous buildings in idealised urban models. Energy Procedia. 78:3055–60. doi:10.1016/j.egypro.2015.11.725
  • Moonen, P., T. Defraeye, V. Dorer, B. Blocken, and J. Carmeliet. 2012. Urban physics: Effect of the micro-climate on comfort, health and energy demand. Frontiers of Architectural Research 1 (3):197–228. doi:10.1016/j.foar.2012.05.002
  • Oke, T. R. 1988. Street design and urban canopy layer climate. Energy and Buildings. 11 (1–3):103–13. doi:10.1016/0378-7788(88)90026-6
  • Pope, S. B. 2000. Turbulent flows: The Edinburgh building. Cambridge, UK: Cambridge University Press.
  • Rahim, Z. A., and A. H. Hashim. 2012. Adapting to terrace housing living in Malaysia. Procedia—Social and Behavioral Sciences 36:147–57. doi:10.1016/j.sbspro.2012.03.017
  • Salizzoni, P., L. Soulhac, P. Mejean, and R. J. Perkins. 2008. Influence of a two-scale surface roughness on a neutral turbulent boundary layer. Boundary-Layer Meteorology 127 (1):97–110. doi:10.1007/s10546-007-9256-8
  • Sato, T., A. Hagishima, N. Ikegaya, and J. Tanimoto. 2016. Wind tunnel experiment on turbulent flow field around 2D street canyon with eaves. Journal of Environmental Engineering (Transactions of AIJ) 81 (723):467–76. doi:10.3130/aije.81.467
  • Sazally, S. H., E. O. Omar, H. Hamdan, and A. F. I. Bajunid. 2012. Personalisation of terraced houses in Section 7, Shah Alam, Selangor. Procedia—Social and Behavioral Sciences 49:319–27. doi:10.1016/j.sbspro.2012.07.030
  • Selangor State Government. 2010. Manual guideline and selangor state planning standards. 2nd ed. Landed Housing. Selangor State Government, Shah Alam.
  • Sini, J. F., S. Anquetin, and P. G. Mestayer. 1996. Pollutant dispersion and thermal effects in urban street canyons. Atmospheric Environment. 30 (15):2659–77. doi:10.1016/1352-2310(95)00321-5
  • Takano, Y., and P. Moonen. 2013. On the influence of roof shape on flow and dispersion in an urban street canyon. Journal of Wind Engineering and Industrial Aerodynamics 123:107–20. doi:10.1016/j.jweia.2013.10.006
  • Tsang, C. W., K. C. S. Kwok, and P. A. Hitchcock. 2012. Wind tunnel study of pedestrian level wind environment around tall buildings: Effects of building dimensions, separation and podium. Building and Environment. 49:167–81. doi:10.1016/j.buildenv.2011.08.014
  • Tse, K. T., X. Zhang, A. U. Weerasuriya, S. W. Li, K. C. S. Kwok, C. M. Mak, and J. Niu. 2017. Adopting ‘lift-up’ building design to improve the surrounding pedestrian-level wind environment. Building and Environment. 117:154–65. doi:10.1016/j.buildenv.2017.03.011
  • van Hooff, T., and B. Blocken. 2010. On the effect of wind direction and urban surroundings on natural ventilation of a large semi-enclosed stadium. Computers & Fluids. 39 (7):1146–55. doi:10.1016/j.compfluid.2010.02.004
  • Versteeg, H. K., and W. Malalasekera. 2008. An introduction to computational fluid dynamics: The finite volume method second edition. Edinburgh Gate, Harlow: Pearson Education Limited.
  • Xie, Z. T., and I. P. Castro. 2006. LES and RANS for turbulent flow over arrays of wall-mounted obstacles. Flow, Turbulence and Combustion 76 (3):291–312. doi:10.1007/s10494-006-9018-6
  • Yuan, C., and E. Ng. 2012. Building porosity for better urban ventilation in high-density cities—A computational parametric study. Building and Environment. 50:176–89. doi:10.1016/j.buildenv.2011.10.023
  • Xie, Z.-T., O. Coceal, and I. P. Castro. 2008. Large-eddy simulation of flows over random urban-like obstacles. Boundary-Layer Meteorology 129 (1):1–23. doi:10.1007/s10546-008-9290-1
  • Yuan, C. S. 2007. The effect of building shape modification on wind pressure differences for cross-ventilation of a low-rise building. International Journal of Ventilation. 6 (2):167–76. doi:10.1080/14733315.2007.11683775
  • Zaki, S. A., N. F. M. Kasim, N. Ikegaya, A. Hagishima, and M. S. Mat Ali. 2018. Numerical simulation on wind-driven cross ventilation in square arrays of urban buildings with different opening positions. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 49 (2):101–14.
  • Zhang, X., K. T. Tse, A. U. Weerasuriya, S. W. Li, K. C. S. Kwok, C. M. Mak, J. Niu, and Z. Lin. 2017. Evaluation of pedestrian wind comfort near ‘lift-up’ buildings with different aspect ratios and central core modifications. Building and Environment. 124:245–57. doi:10.1016/j.buildenv.2017.08.012
  • Zhang, X., K. T. Tse, A. U. Weerasuriya, K. C. S. Kwok, J. Niu, Z. Lin, and C. M. Mak. 2018. Pedestrian-level wind conditions in the space underneath lift-up buildings. Journal of Wind Engineering and Industrial Aerodynamics. 179:58–69. doi:10.1016/j.jweia.2018.05.015

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.