221
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Performance analysis of a membrane dehumidifier system subject to component characteristics – a numerical model

, , &

References

  • ISO 15105-1. 2007. Plastics—Film and sheeting—Determination of gas-transmission rate—Part 1: Differential-pressure methods.
  • Abraham, J., K. S. Vasu, C. D. Williams, K. Gopinadhan, Y. Su, C. T. Cherian, J. Dix, E. Prestat, S. J. Haigh, I. V. Grigorieva, et al. 2017. Tunable sieving of ions using graphene oxide membranes. Nature Nanotechnology 12 (6):546–50. doi:10.1038/nnano.2017.21
  • Bahadori, A. 2014. Natural gas processing: Technology and engineering design. USA: Gulf Professional Publishing.
  • Blasius, H. 1913. Das aehnlichkeitsgesetz bei reibungsvorgängen in flüssigkeiten. In Mitteilungen über Forschungsarbeiten auf dem Gebiete des Ingenieurwesens, ed. Verein deutscher Ingenieure, 1–41. . Germany: Springer, Berlin, Heidelberg.
  • Bui, T. D., F. Chen, A. Nida, K. J. Chua, and K. C. Ng. 2015. Experimental and modeling analysis of membrane-based air dehumidification. Separation and Purification Technology 144:114–22. doi:10.1016/j.seppur.2015.02.019
  • Bui, D. T., M. Kum Ja, J. M. Gordon, K. C. Ng, and K. J. Chua. 2017. A thermodynamic perspective to study energy performance of vacuum-based membrane dehumidification. Energy 132:106–15. doi:10.1016/j.energy.2017.05.075
  • Bui, T. D., Y. Wong, M. R. Islam, and K. J. Chua. 2017. On the theoretical and experimental energy efficiency analyses of a vacuum-based dehumidification membrane. Journal of Membrane Science 539:76–87. doi:10.1016/j.memsci.2017.05.067
  • Bynum, J. 2012. Thermodynamic modeling of a membrane dehumidification system. Doctoral dissertation, Texas A&M University.
  • Dodoo, A., L. Gustavsson, and R. Sathre. 2011. Building energy-efficiency standards in a life cycle primary energy perspective. Energy and Buildings 43 (7):1589–97. doi:10.1016/j.enbuild.2011.03.002
  • Fanning, J. T. 1877. A practical treatise on water-supply engineering: Relating to the hydrology, hydrodynamics, and practical construction of water-works, in North America. With numerous tables and illustrations. New York, NY: Van Nostrand.
  • Ge, T. S., Y. Li, R. Z. Wang, and Y. J. Dai. 2008. A review of the mathematical models for predicting rotary desiccant wheel. Renewable and Sustainable Energy Reviews 12 (6):1485–528. doi:10.1016/j.rser.2007.01.012
  • Gnielinski, V. 1976. New equations for heat and mass transfer in turbulent pipe and channel flow. International Journal of Chemical Engineering. 16 (2):359–68.
  • ISA-75.01.01. 2007. Flow equations for sizing control valves.
  • La, D., Y. J. Dai, Y. Li, R. Z. Wang, and T. S. Ge. 2010. Technical development of rotary desiccant dehumidification and air conditioning: A review. Renewable and Sustainable Energy Reviews 14 (1):130–47. doi:10.1016/j.rser.2009.07.016
  • Lecaros, R. L. G., G. E. J. Mendoza, W.-S. Hung, Q.-F. An, A. R. Caparanga, H.-A. Tsai, C.-C. Hu, K.-R. Lee, and J.-Y. Lai. 2017. Tunable interlayer spacing of composite graphene oxide-framework membrane for acetic acid dehydration. Carbon 123:660–7. doi:10.1016/j.carbon.2017.08.019
  • Lemmon, E. W., M. L. Huber, and M. O. McLinden. 2007. NIST Standard Reference Database 23: Reference fluid thermodynamic and transport properties-REFPROP, Version 8.0. National Institute of Standards and Technology, Standard Reference Data Program. National Institute of Standards and Technology, Gaithersburg, MD.
  • Liang, C.-H., L.-Z. Zhang, and L.-X. Pei. 2010a. Performance analysis of a direct expansion air dehumidification system combined with membrane-based total heat recovery. Energy 35 (9):3891–901. doi:10.1016/j.energy.2010.06.002
  • Liang, C. H., L. Z. Zhang, and L. X. Pei. 2010b. Independent air dehumidification with membrane-based total heat recovery: Modeling and experimental validation. International Journal of Refrigeration 33 (2):398–408. doi:10.1016/j.ijrefrig.2009.09.016
  • Majoumerd, M. M., S. De, M. Assadi, and P. Breuhaus. 2012. An EU initiative for future generation of IGCC power plants using hydrogen-rich syngas: Simulation results for the baseline configuration. Applied Energy 99:280–90. doi:10.1016/j.apenergy.2012.05.023
  • Nair, R. R., H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim. 2012. Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science 335 (6067):442–4. doi:10.1126/science.1211694
  • Nusselt, W. 1916. Die oberflachenkondensation des wasserdamphes, Vol. 60, 541–546. Japan: VDI.
  • Pérez-Lombard, L., J. Ortiz, and C. Pout. 2008. A review on buildings energy consumption information. Energy and Buildings 40 (3):394–8. doi:10.1016/j.enbuild.2007.03.007
  • Sayyaadi, H., and R. Mehrabipour. 2012. Efficiency enhancement of a gas turbine cycle using an optimized tubular recuperative heat exchanger. Energy 38 (1):362–75. doi:10.1016/j.energy.2011.11.048
  • Schaff, F. N. 2014. Design and development of a vacuum dehumidification test facility. Master's thesis, Texas A & M University.
  • Scovazzo, P., and A. J. Scovazzo. 2013. Isothermal dehumidification or gas drying using vacuum sweep dehumidification. Applied Thermal Engineering 50 (1):225–33. doi:10.1016/j.applthermaleng.2012.05.019
  • Shin, Y., W. Liu, B. Schwenzer, S. Manandhar, D. Chase-Woods, M. H. Engelhard, R. Devanathan, L. S. Fifield, W. D. Bennett, B. Ginovska, et al. 2016. Graphene oxide membranes with high permeability and selectivity for dehumidification of air. Carbon 106:164–70. doi:10.1016/j.carbon.2016.05.023
  • Stern, S. A., and W. P. Walawender Jr. 1969. Analysis of membrane separation parameters. Separation Science Technology 4 (2):129–59. doi:10.1080/01496396908052244
  • Sun, F., K. Liu, T. Xu, D. Ba, S. Sun, W. Yao, X. Wang, L. Wang, and Y. Li. 2018. Progress of establishing a standard for measuring the performance of mechanical booster vacuum pump by ISO TC 112. Vacuum 150:41–8. doi:10.1016/j.vacuum.2018.01.024
  • Vacuum, Pfeiffer. 2013. Vacuum technology know how. Asslar, Germany.
  • Vallieres, C., and E. Favre. 2004. Vacuum versus sweeping gas operation for binary mixtures separation by dense membrane processes. Journal of Membrane Science 244 (1–2):17–23. doi:10.1016/j.memsci.2004.04.023
  • Woods, J. 2014. Membrane processes for heating, ventilation, and air conditioning. Renewable and Sustainable Energy Reviews 33:290–304. doi:10.1016/j.rser.2014.01.092
  • Xing, R., Y. Rao, W. TeGrotenhuis, N. Canfield, F. Zheng, D. W. Winiarski, and W. Liu. 2013. Advanced thin zeolite/metal flat sheet membrane for energy efficient air dehumidification and conditioning. Chemical Engineering Science 104:596–609. doi:10.1016/j.ces.2013.08.061
  • Zhang, L.-Z. 2012. Progress on heat and moisture recovery with membranes: From fundamentals to engineering applications. Energy Conversion and Management 63:173–95. doi:10.1016/j.enconman.2011.11.033
  • Zhao, B. N., Peng, C. Liang, W. F. Yong, and T.-S. Chung. 2015. Hollow fiber membrane dehumidification device for air conditioning system. Membranes 5 (4):722–38. doi:10.3390/membranes5040722

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.