284
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Recovering latent and sensible energy from building exhaust with membrane-based energy recovery ventilation

, & ORCID Icon

References

  • Al-Waked, R., M. S. Nasif, and D. B. Mostafa. 2018. Enhancing the performance of energy recovery ventilators. Energy Conversion and Management 171:196–210. doi:10.1016/j.enconman.2018.05.105
  • ANSI/ASHRAE. 2016. Standard 62: Ventilation for acceptable indoor air quality. Atlanta GA, USA: American Society of Heating, Refrigerating, and Air Conditioning Engineers Inc.
  • Beasley, J. K., and R. E. Penn. 1981. Hollow fine fiber vs. flat sheet membranes - a comparison of structures and performance. Desalination 38:361–72. doi:10.1016/S0011-9164(00)86080-4
  • Bui, T. D., F. Chen, A. Nida, K. J. Chua, and K. C. Ng. 2015. Experimental and modeling analysis of membrane-based air dehumidification. Separation and Purification Technology 144:114–22. doi:10.1016/j.seppur.2015.02.019
  • Bui, T. D., Y. Wong, M. R. Islam, and K. J. Chua. 2017. On the theoretical and experimental energy efficiency analyses of a vacuum-based dehumidification membrane. Journal of Membrane Science 539:76–87. doi:10.1016/j.memsci.2017.05.067
  • Chang, D., J. Min, S. Oh, and K. Moon. 1998. Effect of pressure drop on performance of hollow-fiber membrane module for gas permeation. Korean Journal of Chemical Engineering 15 (4):396–403. doi:10.1007/BF02697129
  • Hao, P., and G. G. Lipscomb. 2010. The effect of sweep uniformity on gas dehydration module performance. In Membrane gas separation, 333–53. New York: John Wiley & Sons, Ltd.
  • Huang, S.-M., M. Yang, W.-H. Huang, S. Tao, B. Hu, and F. G. F. Qin. 2018. An analytical solution of heat and mass transfer in a counter/parallel flow plate membrane module used in an absorption heat pump. International Journal of Thermal Sciences 124:110–21. doi:10.1016/j.ijthermalsci.2017.10.002
  • Huizing, R., H. Chen, and F. Wong. 2015. Contaminant transport in membrane based energy recovery ventilators. Science and Technology for the Built Environment 21 (1):54–66. doi:10.1080/10789669.2014.969171
  • Ito, A. 2000. Dehumidification of air by a hygroscopic liquid membrane supported on surface of a hydrophobic microporous membrane. Journal of Membrane Science 175 (1):35–42. doi:10.1016/S0376-7388(00)00404-X
  • Jang, J.,. E.-C. Kang, S. Jeong, and S.-R. Park. 2018. Experimental and numerical analysis for predicting the dehumidification performance of a hollow fiber type membrane using the log mean pressure difference method. Journal of Mechanical Science and Technology 32 (11):5475–81. doi:10.1007/s12206-018-1045-4
  • Justo Alonso, M., P. Liu, H. M. Mathisen, G. Ge, and C. Simonson. 2015. Review of heat/energy recovery exchangers for use in ZEBs in cold climate countries. Building and Environment 84:228–37. doi:10.1016/j.buildenv.2014.11.014
  • Justo Alonso, M., H. M. Mathisen, S. Aarnes, and P. Liu. 2017. Performance of a lab-scale membrane-based energy exchanger. Applied Thermal Engineering 111:1244–54. doi:10.1016/j.applthermaleng.2015.11.119
  • Kim, K. H., P. G. Ingole, and H. K. Lee. 2017. Membrane dehumidification process using defect-free hollow fiber membrane. International Journal of Hydrogen Energy 42 (38):24205–12. doi:10.1016/j.ijhydene.2017.08.018
  • Kistler, K. R., and E. L. Cussler. 2002. Membrane modules for building ventilation. Chemical Engineering Research and Design 80 (1):53–64. doi:10.1205/026387602753393367
  • Koester, S., A. Klasen, J. Lölsberg, and M. Wessling. 2016. Spacer enhanced heat and mass transfer in membrane-based enthalpy exchangers. Journal of Membrane Science 520:566–73. doi:10.1016/j.memsci.2016.06.002
  • Labban, O., T. Chen, A. F. Ghoniem, J. H. Lienhard, and L. K. Norford. 2017. Next-generation HVAC: Prospects for and limitations of desiccant and membrane-based dehumidification and cooling. Applied Energy 200:330–46. doi:10.1016/j.apenergy.2017.05.051
  • Liu, P., M. Justo Alonso, H. M. Mathisen, and C. Simonson. 2017. Energy transfer and energy saving potentials of air-to-air membrane energy exchanger for ventilation in cold climates. Energy and Buildings 135:95–108. doi:10.1016/j.enbuild.2016.11.047
  • Lüdtke, O., R.-D. Behling, and K. Ohlrogge. 1998. Concentration polarization in gas permeation. Journal of Membrane Science 146 (2):145–57. doi:10.1016/S0376-7388(98)00104-5
  • Mehrabian, M. A., and B. Samadi. 2010. Heat-transfer characteristics of wet heat exchangers in parallel-flow and counter-flow arrangements. International Journal of Low-Carbon Technologies 5 (4):256–63. doi:10.1093/ijlct/ctq032
  • Metz, S., W. Vandeven, J. Potreck, M. Mulder, and M. Wessling. 2005. Transport of water vapor and inert gas mixtures through highly selective and highly permeable polymer membranes. Journal of Membrane Science 251 (1-2):29–41. doi:10.1016/j.memsci.2004.08.036
  • Min, J., and M. Su. 2010. Performance analysis of a membrane-based enthalpy exchanger: Effects of the membrane properties on the exchanger performance. Journal of Membrane Science 348 (1-2):376–82. doi:10.1016/j.memsci.2009.11.032
  • National Solar Radiation Database. 2005. 1991–2005 update: Typical meteorological year 3. https://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/.
  • Paul, B. K., S. Kawula, and C. Song. 2019. A manufacturing process design for producing a membrane-based energy recovery ventilator with high aspect ratio support ribs. Journal of Manufacturing Systems 52:242–52. doi:10.1016/j.jmsy.2019.04.004
  • Qu, M., O. Abdelaziz, Z. Gao, and H. Yin. 2018. Isothermal membrane-based air dehumidification: A comprehensive review. Renewable and Sustainable Energy Reviews 82:4060–9. doi:10.1016/j.rser.2017.10.067
  • Scovazzo, P., J. Burgos, A. Hoehn, and P. Todd. 1998. Hydrophilic membrane-based humidity control. Journal of Membrane Science 149 (1):69–81. doi:10.1016/S0376-7388(98)00176-8
  • Scovazzo, P., and R. MacNeill. 2019. Membrane module design, construction, and testing for vacuum sweep dehumidification (VSD): Part I, prototype development and module design. Journal of Membrane Science 576:96–107. doi:10.1016/j.memsci.2018.12.076
  • Scovazzo, P., and A. J. Scovazzo. 2013. Isothermal dehumidification or gas drying using vacuum sweep dehumidification. Applied Thermal Engineering 50 (1):225–33. doi:10.1016/j.applthermaleng.2012.05.019
  • Sebai, R., R. Chouikh, and A. Guizani. 2014. Cross-flow membrane-based enthalpy exchanger balanced and unbalanced flow. Energy Conversion and Management 87:19–28. doi:10.1016/j.enconman.2014.07.002
  • Shao, P., and R. Y. M. Huang. 2006. An analytical approach to the gas pressure drop in hollow fiber membranes. Journal of Membrane Science 271 (1–2):69–76. doi:10.1016/j.memsci.2005.06.058
  • Sijbesma, H., K. Nymeijer, R. van Marwijk, R. Heijboer, J. Potreck, and M. Wessling. 2008. Flue gas dehydration using polymer membranes. Journal of Membrane Science 313 (1–2):263–76. doi:10.1016/j.memsci.2008.01.024
  • U.S. Energy Information Administration. 2020. January 2020 monthly energy review. https://www.eia.gov/totalenergy/data/monthly/pdf/mer.pdf.
  • Vakiloroaya, V., B. Samali, A. Fakhar, and K. Pishghadam. 2014. A review of different strategies for HVAC energy saving. Energy Conversion and Management 77:738–54. doi:10.1016/j.enconman.2013.10.023
  • Vallieres, C. 2004. Vacuum versus sweeping gas operation for binary mixtures separation by dense membrane processes. Journal of Membrane Science 244 (1–2):17–23. doi:10.1016/j.memsci.2004.04.023
  • Wang, K. L., S. H. McCray, D. D. Newbold, and E. L. Cussler. 1992. Hollow fiber air drying. Journal of Membrane Science 72 (3):231–44. doi:10.1016/0376-7388(92)85051-J
  • Woods, J. 2014. Membrane processes for heating, ventilation, and air conditioning. Renewable and Sustainable Energy Reviews 33:290–304. doi:10.1016/j.rser.2014.01.092
  • Xing, R., Y. Rao, W. TeGrotenhuis, N. Canfield, F. Zheng, D. W. Winiarski, and W. Liu. 2013. Advanced thin zeolite/metal flat sheet membrane for energy efficient air dehumidification and conditioning. Chemical Engineering Science 104:596–609. doi:10.1016/j.ces.2013.08.061
  • Yang, B., W. Yuan, F. Gao, and B. Guo. 2015. A review of membrane-based air dehumidification. Indoor and Built Environment 24 (1):11–26. doi:10.1177/1420326X13500294
  • Zhang, L. Z. 2012. Progress on heat and moisture recovery with membranes: From fundamentals to engineering applications. Energy Conversion and Management 63:173–95. doi:10.1016/j.enconman.2011.11.033
  • Zhang, L. Z. 2016. A reliability-based optimization of membrane-type total heat exchangers under uncertain design parameters. Energy 101:390–401. doi:10.1016/j.energy.2016.02.032
  • Zhang, L. Z., and Y. Jiang. 1999. Heat and mass transfer in a membrane-based energy recovery ventilator. Journal of Membrane Science 163 (1):29–38. doi:10.1016/S0376-7388(99)00150-7
  • Zhang, L. Z., and J. L. Niu. 2001. Energy requirements for conditioning fresh air and the long- term savings with a membrane-based energy recovery ventilator in Hong Kong. Energy 26 (2):119–35. doi:10.1016/S0360-5442(00)00064-5
  • Zhang, L. Z., and J. L. Niu. 2002. Effectiveness correlations for heat and moisture transfer processes in an enthalpy exchanger with membrane cores. Journal of Heat Transfer 124 (5):922–9. doi:10.1115/1.1469524
  • Zhang, L. Z., D. S. Zhu, X. H. Deng, and B. Hua. 2005. Thermodynamic modeling of a novel air dehumidification system. Energy and Buildings 37 (3):279–86. doi:10.1016/j.enbuild.2004.06.019
  • Zhao, B., L.-Y. Wang, and T.-S. Chung. 2019. Enhanced membrane systems to harvest water and provide comfortable air via dehumidification & moisture condensation. Separation and Purification Technology 220:136–44.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.