261
Views
2
CrossRef citations to date
0
Altmetric
Articles

Effect of displacer on performance of Stirling-type pulse tube refrigerator with work recovery

, , , &

References

  • Abolghasemi, M. A., K. Liang, R. Stone, M. Dadd, and P. Bailey. 2018. Stirling pulse tube cryocooler using an active displacer. Cryogenics 96:53–61. doi:10.1016/j.cryogenics.2018.10.004
  • Chen, X., F. Ling, Y. P. Zeng, and Y. N. Wu. 2019. Investigation of the high efficiency pulse tube refrigerator with acoustic power recovery. Applied Thermal Engineering 159:113904. doi:10.1016/j.applthermaleng.2019.113904
  • de Waele, A. 2019. Pulse-tube refrigerator with a warm displacer: Theoretical treatment in the harmonic approximation. Cryogenics 100:53–61. doi:10.1016/j.cryogenics. 2019.04.002
  • Deng, W. F., S. S. Liu, Z. H. Jiang, L. Ding, and Y. N. Wu. 2020. Development of a spaceborne pulse tube cooler operating at 170K. International Journal of Refrigeration 115:1–8. doi:10.1016/j.ijrefrig.2020.02.028
  • Gedeon, D. 1995. Sage: Object-oriented software for cryocooler design. In Cryocoolers 8, ed. R. G. Ross. Boston, MA: Springer.
  • Gedeon, D. 2016. Sage user’s guide. Athens (OH): Gedeon Associates.
  • Gifford, W., and R. Longsworth. 1964. Pulse-tube refrigeration. Journal of Engineering for Industry 86 (3):264–8. doi:10.1115/1.3670530
  • Guo, Z. R., Y. Z. Lin, and S. W. Zhu. 2020. Experimental investigation of displacer rod diameter effect on pulse tube cryocooler. International Journal of Refrigeration 112:69–73. doi:10.1016/j.ijrefrig.2019.12.023
  • Hu, J. Y., S. Chen, J. Zhu, L. M. Zhang, E. C. Luo, W. Dai, and H. B. Li. 2016. An efficient pulse tube cryocooler for boil-off gas reliquefaction in liquid natural gas tanks. Applied Energy 164:1012–8. doi:10.1016/j.apenergy.2015.03.096
  • Jahanbakhshi, R., M. H. Saidi, and A. R. Ghahremani. 2013. Numerical modeling of pulse tube refrigerator and sensitivity analysis of simulation. HVAC&R Research 19 (3):242–56. doi:10.1080/10789669.2012.758549
  • Kanao, K., N. Watanabe, and Y. Kanazawa. 1994. A miniature pulse tube refrigerator for temperatures below 100 K. Cryogenics 34:167–70. doi:10.1016/s0011-2275(05) 80035-9
  • Ki, T., and S. Jeong. 2011. Stirling-type pulse tube refrigerator with slit-type heat exchangers for HTS superconducting motor. Cryogenics 51 (6):341–6. doi:10.1016/j.cryogenics.2010.10.004
  • Ki, T., and S. Jeong. 2012. Design and analysis of compact work-recovery phase shifter for pulse tube refrigerator. Cryogenics 52 (2–3):105–10. doi:10.1016/j.cryogenics. 2012.01.007
  • Kittel, P. 1992. Ideal orifice pulse tube refrigerator performance. Cryogenics 32 (9):843–4. doi:10.1016/0011-2275(92)90320-A
  • Lei, T., J. M. Pfotenhauer, and W. J. Zhou. 2016. Analysis and comparison of different phase shifters for Stirling pulse tube cryocooler. Cryogenics 80:63–73. doi:10.1016/j.cryogenics.2016.09.007
  • Liu, S. S., X. Chen, A. K. Zhang, A. K. Kan, H. Zhang, and Y. N. Wu. 2016. Impact of coiled type inertance tube on performance of pulse tube refrigerator. Applied Thermal Engineering 107:63–9. doi:10.1016/j.applthermaleng.2016.06.154
  • Liu, S. S., X. Chen, A. K. Zhang, Y. N. Wu, and H. Zhang. 2017. Investigation on phase shifter of a 10 W/70 K inertance pulse tube refrigerator. International Journal of Refrigeration 74:450–7. doi:10.1016/j.ijrefrig.2016.10.021
  • Poshtkouhian Badi, A., and H. Beheshti. 2016. Numerical study of a miniature scale pulse tube cryocooler: The effects of operating conditions. Science and Technology for the Built Environment 22 (5):619–27. doi:10.1080/23744731. 2016.1184049
  • Rana, H., M. A. Abolghasemi, R. Stone, M. Dadd, and P. Bailey. 2020. Numerical modelling of a coaxial Stirling pulse tube cryocooler with an active displacer for space applications. Cryogenics 106:103048. doi:10.1016/j.cryogenics.2020. 103048
  • Ross, R. G., D. L. Johnson, Jr., G. R. Mon, and G. Smedley. 1994. Cryocooler resonance characterization. Cryogenics 34 (5):435–42. doi:10.1016/0011-2275(94)90133-3
  • Schmidt, B., M. Vorholzer, M. Dietrich, J. Falter, A. Schirmeisen, and G. Thummes. 2017. A small two-stage pulse tube cryocooler operating at liquid Helium temperatures with an input power of 1 kW. Cryogenics 88:129–31. doi:10.1016/j.cryogenics.2017.10.002
  • Swift, G. W., D. L. Gardner, and S. N. Backhaus. 2011. Quarter-wave pulse tube. Cryogenics 51 (10):575–83. doi:10.1016/j.cryogenics.2011.08.001
  • Wang, Y. N., Y. H. Cui, W. Dai, J. M. Pfotenhauer, X. T. Wang, and E. C. Luo. 2020. Effects of DC flow on a cryogen-free Vuilleumier type pulse tube cryocooler. International Journal of Refrigeration 114:148–54. doi:10.1016/j.ijrefrig.2020.02.031
  • Wang, K., S. Dubey, F. H. Choo, and F. Duan. 2016. Modelling of pulse tube refrigerators with inertance tube and mass-spring feedback mechanism. Applied Energy 171:172–83. doi:10.1016/j.apenergy.2016.03.002
  • Wang, B., Y. X. Guo, Y. J. Chao, Y. B. Wang, L. Y. Wang, and Z. H. Gan. 2019. Acoustic-Mechanical-Electrical (AcME) coupling between the linear compressor and the Stirling-type cryocoolers. International Journal of Refrigeration 100:175–83. doi:10.1016/j.ijrefrig.2019.01.023
  • Wang, L. Y., M. Wu, X. Sun, and Z. H. Gan. 2016. A cascade pulse tube cooler capable of energy recovery. Applied Energy 164:572–8. doi:10.1016/j.apenergy.2015.12.010
  • Wang, X. T., Y. B. Zhang, H. B. Li, W. Dai, S. Chen, G. Lei, and E. C. Luo. 2015. A high efficiency hybrid stirling-pulse tube cryocooler. Aip Advances 5 (3):037127. doi:10.1063/1.4915900
  • Wang, N. L., M. G. Zhao, J. Quan, H. L. Chen, J. T. Liang, Q. L. Zhu, and J. H. Cai. 2019. Design and analysis of a pulse tube cryocooler for low temperature fridge. IOP Conference Series: Materials Science and Engineering 502, 012028.
  • Xu, J. Y., J. Y. Hu, J. F. Hu, E. C. Luo, L. M. Zhang, and B. Gao. 2017. Cascade pulse-tube cryocooler using a displacer for efficient work recovery. Cryogenics 86:112–7. doi:10.1016/j.cryogenics.2017.08.002
  • Zhou, W. J., J. M. Pfotenhauer, and G. F. Nellis. 2018. Linear adjustable inertance tubes for pulse tube cryocoolers. International Journal of Refrigeration 86:56–61. doi:10.1016/j.ijrefrig.2017.11.021
  • Zhu, S. W. 2014. Step piston pulse tube refrigerator. Cryogenics 64:63–9. doi:10.1016/j.cryogenics.2014.09.006
  • Zhu, S. W. 2018. A new concept of cold resonator pulse tube refrigerator. Energy 144:1026–36. doi:10.1016/j.energy.2017.12.079
  • Zhu, S. W., and M. Nogawa. 2010. Pulse tube stirling machine with warm gas-driven displacer. Cryogenics 50 (5):320–30. doi:10.1016/j.cryogenics.2010.01.011
  • Zhu, S. W., P. Y. Wu, and Z. Q. Chen. 1990. Double inlet pulse tube refrigerators: An important improvement. Cryogenics 30 (6):514–20. doi:10.1016/0011-2275(90) 90051-D

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.