232
Views
0
CrossRef citations to date
0
Altmetric
Articles

Review of enhanced heat and mass transfer by additives

, &
Pages 1272-1292 | Received 20 Apr 2022, Accepted 21 Jul 2022, Published online: 12 Aug 2022

References

  • Amaris, C., M. Vallès, and M. Bourouis. 2018. Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: a review. Applied Energy 231:826–53. doi:10.1016/j.apenergy.2018.09.071
  • Antonio, D. L., M. Donate, C. Molero, J. Villaseñor, and J. F. Rodrı́guez. 2004. Performance evaluation and simulation of a new absorbent for an absorption refrigeration system. International Journal of Refrigeration 27 (4):324–30. doi:10.1016/j.ijrefrig.2003.12.008
  • Antonio, D. L., M. Donate, and J. F. Rodriguez. 2006. Vapour pressures,densities,and viscosities of the (water + lithium bromide + potassium acetate) system and (water + lithium bromide + sodium lactate) system. The Journal of Chemical Thermodynamics 38 (2):123–9. doi:10.1016/j.jct.2005.04.007
  • Antonio, D. L., M. Donate, and J. F. Rodríguez. 2003. Vapor pressures, densities, and viscosities of the (water + lithium bromide + sodium formate) system and (water + lithium bromide + potassium formate) system. Journal of Chemical & Engineering Data 48 (1):18–22. doi:10.1021/je010312x
  • Antonio, D. L., M. Donate, and J. F. Rodríguez. 2008. Applying surfactants to improve the absorption capacity of mixtures of lithium bromide and formates in absorption refrigeration coolers. International Journal of Refrigeration 31 (6):1073–80. doi:10.1016/j.ijrefrig.2007.12.005
  • Arabi, M, and M. R. Dehghani. 2015. Measurement of solubility and density of water + lithium bromide + lithium chloride and water + lithium bromide + sodium formate systems. International Journal of Refrigeration 56:99–104. doi:10.1016/j.ijrefrig.2015.04.002
  • Asfand, F., Y. Stiriba, and M. Bourouis. 2016. Performance evaluation of membrane-based absorbers employing H2O/(LiBr + LiI + LiNO3 + LiCl) and H2O/(LiNO3 + KNO3 + NaNO3) as working pairs in absorption cooling systems. Energy 115:781–90. doi:10.1016/j.energy.2016.08.103
  • Beutler, A., I. Greiter, A. Wagner, L. Hoffman, S. Schreier, and G. Alefeld. 1996. Surfactants and fluid properties. International Journal of Refrigeration 19 (5):342–6. doi:10.1016/S0140-7007(96)00034-5
  • Cai, W.-H., W.-W. Kong, Y. Wang, M.-S. Zhu, and X.-L. Wang. 2015. Surface tension of lithium bromide aqueous solution/ammonia with additives and nano-particles. Journal of Central South University 22 (5):1979–85. doi:10.1007/s11771-015-2718-0
  • Chen, J. D., J. L. Zhang, Z. J. Hu, and Z. X. Ma. 2017. Falling film transitions on horizontal enhanced tubes: effect of tube spacing. Procedia Engineering 205:1542–9. doi:10.1016/j.proeng.2017.10.242
  • Cheng, W. L., Z. S. Chen, A. Atsushi, P. Hu, and K. Takao. 2003. Theoretical and experimental study on surface tension and dynamic surface tension of aqueous lithium bromide and water with additive. Science in China Series E 46 (2):191–203. doi:10.1360/03ye9021
  • Cheng, W.-L., K. Houda, Z.-S. Chen, A. Akisawa, P. Hu, and T. Kashiwagi. 2004. Heat transfer enhancement by additive in vertical falling film absorption of H2O/LiBr. Applied Thermal Engineering 24 (2-3):281–98. doi:10.1016/j.applthermaleng.2003.08.013
  • Choi, S. U, and J. A. Eastman. 1995. Enhancing thermal conductivity of fluids with nanoparticles. Paper presented at 1995 International Mechanical Engineering Congress and Exposition, San Francisco, CA, November 12–17.
  • Daiguji, H., E. Hihara, and T. Saito. 1997. Mechanism of absorption enhancement by surfactant. International Journal of Heat and Mass Transfer 40 (8):1743–52. doi:10.1016/S0017-9310(96)00290-6
  • Dhinesh, K. D, and A. V. Arasu. 2018. A comprehensive review of preparation, characterization, properties and stability of hybrid nanofluids. Renewable and Sustainable Energy Reviews 81:1669–89. doi:10.1016/j.rser.2017.05.257
  • Ding, Y. L., H. S. Chen, Y. R. He, A. Lapkin, M. Yeganeh, L. Šiller, and Y. V. Butenko. 2007. Forced convective heat transfer of nanofluids. Advanced Powder Technology 18 (6):813–24. doi:10.1163/156855207782515021
  • Donate, M., L. Rodriguez, D. L. Antonio, and J. F. Rodríguez. 2006. Thermodynamic evaluation of new absorbent mixtures of lithium bromide and organic salts for absorption refrigeration machines. International Journal of Refrigeration 29 (1):30–5. doi:10.1016/j.ijrefrig.2005.05.005
  • Eiji, H, and S. Takamoto. 1993. Effect of surfactant on falling film absorption. International Journal of Refrigeration 16 (5):339–46. doi:10.1016/0140-7007(93)90006-T
  • Gao, H. T. 2008. 添加剂不同气相添加方式对溴化锂水溶液吸收水蒸气的影响 [Effects of additive vapor on absorption of water vapor into aqueous lithium bromide by different adding methods]. Journal of Engineering Thermophysics 29 (4):549–52.
  • Gao, H, and E. Hihara. 2004. 含有促进传热传质添加剂的溴化锂水溶液的表面张力 [Surface tension of LiBr aqueous solution with heat/mass transfer enhancement additives]. Journal of Refrigeration 3:5–8.
  • Gao, H. T, and E. J. Hihara. 2005. 气相界面活性剂对溴化锂水溶液吸收水蒸气的影响 [Effects of surfactant vapor on absorption of water vapor into LiBr aqueous solution]. Journal of Engineering Thermophysics 26 (3):391–3.
  • Gao, H. T., F. Mao, Y. C. Song, J. J. Hong, and Y. Y. Yan. 2020. Effect of adding copper oxide nanoparticles on the mass/heat transfer in falling film absorption. Applied Thermal Engineering 181:115937. doi:10.1016/j.applthermaleng.2020.115937
  • Giannetti, N., A. Rocchetti, S. Yamaguchi, and K. Saito. 2018. Heat and mass transfer coefficients of falling-film absorption on a partially wetted horizontal tube. International Journal of Thermal Sciences 126:56–66. doi:10.1016/j.ijthermalsci.2017.12.020
  • Giannetti, N., S. Yamaguchi, and K. Saito. 2018. Numerical simulation of Marangoni convection within absorptive aqueous Li-Br. International Journal of Refrigeration 92:176–84. doi:10.1016/j.ijrefrig.2018.05.035
  • Glebov, D, and F. Setterwall. 2002. Experimental study of heat transfer additive influence on the absorption chiller performance. International Journal of Refrigeration 25 (5):538–45. doi:10.1016/S0140-7007(01)00042-1
  • Ham, J., J. Kim, and H. Cho. 2016. Theoretical analysis of thermal performance in a plate type liquid heat exchanger using various nanofluids based on LiBr solution. Applied Thermal Engineering 108:1020–32. doi:10.1016/j.applthermaleng.2016.07.196
  • Hamilton, R. L, and O. K. Crosser. 1962. Thermal conductivity of heterogeneous two-component systems. Industrial & Engineering Chemistry Fundamentals 1 (3):187–91. doi:10.1021/i160003a005
  • He, Y. R., Y. Jin, H. S. Chen, Y. L. Ding, D. Q. Cang, and H. L. Lu. 2007. Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. International Journal of Heat and Mass Transfer 50 (11–12):2272–81. doi:10.1016/j.ijheatmasstransfer.2006.10.024
  • Horacio, P.-Z, and S. Darren. 1995. Effect of additive concentration on falling film absorption. HVAC&R Research 1 (4):273–81. doi:10.1080/10789669.1995.10391325
  • Hosseinnia, S. M., M. Naghashzadegan, and R. Kouhikamali. 2017. CFD simulation of water vapor absorption in laminar falling film solution of water-LiBr—Drop and jet modes. Applied Thermal Engineering 115:860–73. doi:10.1016/j.applthermaleng.2017.01.022
  • Hozawa, M., M. Inoue, J. Sato, T. Tsukada, and N. Imaishi. 1991. Marangoni convection during steam absorption into aqueous LiBr solution with surfactant. Journal of Chemical Engineering of Japan 24 (2):209–14. doi:10.1252/jcej.24.209
  • Ishida, K, and Y. H. Mori. 1996. Surface tension of aqueous lithium bromide solutions containing 1-octanol as a “heat-transfer additive”. International Communications in Heat and Mass Transfer 23 (7):907–15. doi:10.1016/0735-1933(96)00073-5
  • Jeong, J. K., J. B. Kyung, C. K. Yong, and K. K. Oh. 2021. An experimental study on the heat transfer performance characteristics of horizontal tube falling film absorbers for single-stage absorption heat transformer. Applied Thermal Engineering 198:117485. doi:10.1016/J.APPLTHERMALENG.2021.117485
  • Jiang, W. X., S. H. Li, L. Yang, and K. Du. 2019. Experimental investigation on performance of ammonia absorption refrigeration system with TiO 2 nanofluid. International Journal of Refrigeration 98:80–8. doi:10.1016/j.ijrefrig.2018.09.032
  • Kang, Y. T, and T. Kashiwagi. 2002. Heat transfer enhancement by Marangoni convection in the NH3 –H2O absorption process. International Journal of Refrigeration 25 (6):780–8. doi:10.1016/S0140-7007(01)00074-3
  • Kang, Y. T., H. J. Kim, and K. I. Lee. 2008. Heat and mass transfer enhancement of binary nanofluids for H2O/LiBr falling film absorption process. International Journal of Refrigeration 31 (5):850–6. doi:10.1016/j.ijrefrig.2007.10.008
  • Kashiwagi, T., Y. Kurosaki, and H. Shishido. 1985. Enhancement of vapor absorption into a solution using Marangoni effect. Transactions of the Japan Society oF Mechanical Engineers Series B 51 (463):1002–9. doi:10.1299/kikaib.51.1002
  • Kim, K. J., N. S. Berman, and B. D. Wood. 1994. Surface tension of aqueous lithium bromide +2-ethyl-1-hexanol. Journal of Chemical & Engineering Data 39 (1):122–4. doi:10.1021/je00013a034
  • Kim, K. J., N. S. Berman, and B. D. Wood. 1996. The interfacial turbulence in falling film absorption: effects of additives. International Journal of Refrigeration 19 (5):322–30. doi:10.1016/S0140-7007(96)00025-4
  • Kim, D. S, and C. A. Infante Ferreira. 2009. Flow patterns and heat and mass transfer coefficients of low Reynolds number falling film flows on vertical plates: effects of a wire screen and an additive. International Journal of Refrigeration 32 (1):138–49. doi:10.1016/j.ijrefrig.2008.08.005
  • Kim, H., J. Jeong, and Y. T. Kang. 2012. Heat and mass transfer enhancement for falling film absorption process by SiO2 binary nanofluids. International Journal of Refrigeration 35 (3):645–51. doi:10.1016/j.ijrefrig.2011.11.018
  • Kim, J. K., J. Y. Jung, and Y. T. Kang. 2006. The effect of nano-particles on the bubble absorption performance in a binary nanofluid. International Journal of Refrigeration 29 (1):22–9. doi:10.1016/j.ijrefrig.2005.08.006
  • Kim, J., Y. T. Kang, and C. K. Choi. 2004. Effects of gas phase and additive properties on Marangoni instability for absorption process in a horizontal fluid layer. International Journal of Refrigeration 27 (2):140–9. doi:10.1016/j.ijrefrig.2003.08.002
  • Kim, J.-S., H. Lee, and S. I. Yu. 1999. Absorption of water vapour into lithium bromide-based solutions with additives using a simple stagnant pool absorber. International Journal of Refrigeration 22 (3):188–93. doi:10.1016/S0140-7007(98)00061-9
  • Kini, G., S. Chandrasekaran, M. T. Hughes, and S. Garimella. 2021. Experimental investigation of surfactant-enhanced ammonia-water absorption in a shell-and-tube absorber. International Journal of Refrigeration 129:43–51. doi:10.1016/j.ijrefrig.2021.04.034
  • Kulankara, S, and K. E. Herold. 2000. Theory of heat/mass transfer additives in absorption chillers. HVAC&R Research 6 (4):369–80. doi:10.1080/10789669.2000.10391422
  • Kulankara, S, and K. E. Herold. 2002. Surface tension of aqueous lithium bromide with heat/mass transfer enhancement additives: The effect of additive vapor transport. International Journal of Refrigeration 25 (3):383–9. doi:10.1016/S0140-7007(01)00013-5
  • Layth, A.–G., and M. P. Menguc. 2020. A Review of optical and radiative properties of nanoparticle suspensions: effects of particle stability, agglomeration, and sedimentation. Journal of Enhanced Heat Transfer 27 (3):207–47. doi:10.1615/JEnhHeatTransf.2020033420
  • Lee, S., S. U. S. Choi, S. Li, and J. A. Eastman. 1999. Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer 121 (2):280–9. doi:10.1115/1.2825978
  • Lee, J. K., J. Koo, H. Hong, and Y. T. Kang. 2010. The effects of nanoparticles on absorption heat and mass transfer performance in NH3/H2O binary nanofluids. International Journal of Refrigeration 33 (2):269–75. doi:10.1016/j.ijrefrig.2009.10.004
  • Li, Y, and G. Xie. 2013. 液体添加剂对纳米 LiBr 溶液表面张力的影响研究 [Influence of additives on the surface tension of nano-LiBr aqueous solution and its mechanism]. Journal of Beijing University of Civil Engineering and Architecture 29 (4):31–5.
  • Liu, S. L., S. Q. Shen, X. S. Mu, Y. L. Guo, and D. Y. Yuan. 2019. Experimental study on droplet flow of falling film between horizontal tubes. International Journal of Multiphase Flow 118:10–22. doi:10.1016/j.ijmultiphaseflow.2019.05.008
  • Ma, X. H., F. M. Su, J. B. Chen, T. Bai, and Z. X. Han. 2009. Enhancement of bubble absorption process using a CNTs-ammonia binary nanofluid. International Communications in Heat and Mass Transfer 36 (7):657–60. doi:10.1016/j.icheatmasstransfer.2009.02.016
  • Marta, K, and N. Filip. 2021. Experimental data on the physicochemical and thermodynamic properties of the aqueous lithium bromide modified by the addition of lithium salt. The Journal of Chemical Thermodynamics 161 (106514). doi:10.1016/J.JCT.2021.106514
  • Mortazavi, M., R. N. Isfahani, S. Bigham, and S. Moghaddam. 2015. Absorption characteristics of falling film LiBr (lithium bromide) solution over a finned structure. Energy 87:270–8. doi:10.1016/j.energy.2015.04.074
  • Nagavarapu, A. K, and S. Garimella. 2019. Experimentally validated models for falling-film absorption around microchannel tube banks: heat and mass transfer. International Journal of Heat and Mass Transfer 139 (C):303–16. doi:10.1016/j.ijheatmasstransfer.2019.05.024
  • Nakoryakov, V. E., N. I. Grigoryeva, N. S. Bufetov, and R. A. Dekhtyar. 2008. Heat and mass transfer intensification at steam absorption by surfactant additives. International Journal of Heat and Mass Transfer 51 (21–22):5175–81. doi:10.1016/j.ijheatmasstransfer.2008.03.018
  • Olbricht, M., F. Lonardi, and A. Luke. 2018. Performance improvement of absorption chillers by means of additives – A numerical study. Solar Energy 166:138–45. doi:10.1016/j.solener.2018.03.048
  • Pang, C. W., W. D. Wu, W. Sheng, H. Zhang, and Y. T. Kang. 2012. Mass transfer enhancement by binary nanofluids (NH3/H2 O + Ag nanoparticles) for bubble absorption process. International Journal of Refrigeration 35 (8):2240–7. doi:10.1016/j.ijrefrig.2012.08.006
  • Ramadan, Z, and C. W. Woo. 2021. Hydrodynamic behavior of liquid falling film over horizontal tubes: Effect of hydrophilic circular surface on liquid film thickness and heat transfer. Case Studies in Thermal Engineering 24:100821. doi:10.1016/j.csite.2020.100821
  • Sarit, D. K., P. Nandy, T. Peter, and R. Wilfried. 2003. Temperature dependence of thermal conductivity enhancement for nanofluids. Journal of Heat Transfer 125 (4):567–74. doi:10.1115/1.1571080
  • Sun, H., L. H. Yu, H. Imdad, and G. Y. Ma. 2012. 添加异辛醇对水与金属表面接触角的影响 [Effect of 2-ethylhexanol additives on contact angle of water-metal surface]. CIESC Journal 63 (S2):38–41.
  • Sun, H., C. B. Dang, K. M. Li, and G. Y. Ma. 2015. Effects OF cnt on improvement of heat and mass transfer characteristics of libr aqueous solution containing alcohol additives. Paper presented at Proceedings of ICR 2015, Yokohama, Japan, August 16-22.
  • Sun, H., K. M. Li, G. Y. Ma, and C. B. Dang. 2018. Experimental study on mass transfer enhancement in LiBr/H2o absorption process by adding additives. Paper presented at Proceedings of the 9th Asian Conference on Refrigeration and Air-conditioning ACRA2018, Sapporo, Japan, June 10-13.
  • Wang, G., P. W. Dong, F. Liu, M. Zeng, Q. L. Zhang, Z. Y. Duan, and G. Z. Xie. 2020. 气相异辛醇影响溴化锂溶液传质特性研究 [Study on effect of gas-phase 2EH(2-ethyl-1-hexanol) on mass transfer characteristics of lithium bromide solution]. Nonferrous Metals(Extractive Metallurgy) 12:75–9.
  • Wang, G., P. W. Dong, Y. Lu, M. Zeng, and Q. L. Zhang. 2021. Experimental and theoretical investigation on the surface tension of nano-Lithium Bromide solution. International Communications in Heat and Mass Transfer 123:105231. doi:10.1016/j.icheatmasstransfer.2021.105231
  • Wang, M.-X., C.-F. Liu, X.-G. Wang, and B. Zhao. 2006. Study on the falling film absorption outside smooth and enhanced tubes. Journal of Hydrodynamics 18 (4):405–10. doi:10.1016/S1001-6058(06)60112-1
  • Wang, G., M. Zeng, and Q. L. Zhang. 2020. Experimental investigation of saturated pressure and mass transfer characteristics of nano-lithium bromide solution. International Communications in Heat and Mass Transfer 115 (C):104605. doi:10.1016/j.icheatmasstransfer.2020.104605
  • Wang, G., Q. L. Zhang, M. Zeng, R. J. Xu, G. Z. Xie, and W. P. Chu. 2018. Investigation on mass transfer characteristics of the falling film absorption of LiBr aqueous solution added with nanoparticles. International Journal of Refrigeration 89:149–58. doi:10.1016/j.ijrefrig.2018.01.017
  • Weng, L. D., W. Song, D. J. Jacobs, and G. D. Elliott. 2016. Molecular insights into water vapor absorption by aqueous lithium bromide and lithium bromide/sodium formate solutions. Applied Thermal Engineering 102:125–33. doi:10.1016/j.applthermaleng.2016.03.153
  • Xing, M. B., J. L. Yu, and R. X. Wang. 2015. Experimental study on the thermal conductivity enhancement of water based nanofluids using different types of carbon nanotubes. International Journal of Heat and Mass Transfer 88:609–16. doi:10.1016/j.ijheatmasstransfer.2015.05.005
  • Yan, W.-M., C.-W. Pan, T.-F. Yang, and M. Ghalambaz. 2019. Experimental study on fluid flow and heat transfer characteristics of falling film over tube bundle. International Journal of Heat and Mass Transfer 130:9–24. doi:10.1016/j.ijheatmasstransfer.2018.10.070
  • Yang, L., H. Li, Z. Lu, G. Chen, J. Lei, W. Ma, and Y. Gong. 2019. 溴化锂吸收式制冷技术研究进展 [Progress of H2O/LiBr absorption refrigeration technology]. Advances in New and Renewable Energy 7 (6):532–41.
  • Yao, W., B. Henrik, and S. Fredrik. 1991. Surface tension of lithium bromide solutions with heat-transfer additives. Journal of Chemical & Engineering Data 36 (1):96–8. doi:10.1021/je00001a029
  • Yoon, J. I., E. Kim, K. H. Choi, and W. S. Seol. 2002. Heat transfer enhancement with a surfactant on horizontal bundle tubes of an absorber. International Journal of Heat and Mass Transfer 45 (4):735–41. doi:10.1016/S0017-9310(01)00202-2
  • Yuan, Z, and K. E. Herold. 2001. Surface tension of pure water and aqueous lithium bromide with 2-ethyl-hexanol. Applied Thermal Engineering 21 (8):881–97. doi:10.1016/S1359-4311(00)00088-0
  • Zhang, L. Y., Z. B. Fu, Y. Y. Liu, L. W. Jin, Q. L. Zhang, and W. J. Hu. 2018b. Experimental study on enhancement of falling film absorption process by adding various nanoparticles. International Communications in Heat and Mass Transfer 92:100–6. doi:10.1016/j.icheatmasstransfer.2018.02.011
  • Zhang, L. Y., Y. Y. Liu, Y. Wang, L. W. Jin, Q. L. Zhang, and W. J. Hu. 2018a. Experimental study on the enhancement of mass transfer utilizing Fe3O4Nanofluids. Journal of Heat Transfer 140 (1):012404. doi:10.1115/1.4037398
  • Zhang, H., D. Z. Yin, S. J. You, W. D. Zheng, and S. Wei. 2019. Experimental investigation of heat and mass transfer in a LiBr-H2O solution falling film absorber on horizontal tubes: Comprehensive effects of tube types and surfactants. Applied Thermal Engineering 146:203–11. doi:10.1016/j.applthermaleng.2018.09.127
  • Zhu, D. S., X. F. Li, N. Wang, X. J. Wang, J. W. Gao, and H. Li. 2009. Dispersion behavior and thermal conductivity characteristics of Al2O3 –H2O nanofluids. Current Applied Physics 9 (1):131–9. doi:10.1016/j.cap.2007.12.008
  • Ziegler, F, and G. Grossman. 1996. Heat-transfer enhancement by additives. International Journal of Refrigeration 19 (5):301–9. doi:10.1016/S0140-7007(96)00032-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.