88
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

In-situ empirical validation of common indoor climate parameters in an inhabited multizone dwelling

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 730-747 | Received 19 Oct 2022, Accepted 10 Jul 2023, Published online: 04 Sep 2023

References

  • AIVC. 1991. A review of building airflow simulation. Air Infiltration and Ventilation Centre.
  • American Society of Heating, Ventilating, and Air Conditioning Engineers (ASHRAE). 2002a. Guideline 14-2002, Measurement of energy and demand savings. Technical Report. American Society of Heating, Ventilating, and Air Conditioning Engineers: Atlanta, GA.
  • American Society of Heating, Ventilating, and Air Conditioning Engineers (ASHRAE). 2002b. ASHRAE Guideline 14-2002: Measurement of energy demand and savings. Atlanta, GA: American Society of Heating.
  • Axley, J. 2007. Multizone airflow modeling in buildings: History and theory. HVAC&R Research 13 (6):907–28. doi:10.1080/10789669.2007.10391462.
  • Baetens, R., and D. Saelens. 2016. Modelling uncertainty in district energy simulations by stochastic residential occupant behaviour. Journal of Building Performance Simulation 9 (4):431–47. doi:10.1080/19401493.2015.1070203
  • Beckhoff. 2019. https://www.beckhoff.com/en-en/
  • BeNext. 2019. https://www.benext.eu/smart-home/
  • Bonneau, D., F. X. Rongere, D. Covalet, and B. Gauthier. 1993. Clim2000: modular software for energy simulation in buildings. Proceedings of IBPSA 93 Adelaide, Australia.
  • BuildOpt-VIA. 2007. University of Technology of Vienna. https://www.bph.tuwien.ac.at
  • Carroll, E., E. Hatton, and M. Brown. 2009. Residential energy use behavior change pilot. CMFS Project Code B21383. Franklin Energy.
  • Chen, C., and B. Zhao. 2011. Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. Atmospheric Environment 45 (2):275–88. doi:10.1016/j.atmosenv.2010.09.048
  • Clarke, J. A., and D. McLean. 1988. ESP – AA building and plant energy simulation system. Energy Simulation Research Unit University of Strathclyde, Strathclyde.
  • Dales, R., L. Liu, A. J. Wheeler, and N. L. Gilbert. 2008. Quality of indoor residential air and health. CMAJ 179 (2):147–52. doi:10.1503/cmaj.070359
  • Dassault Systems. 1978. Dymola Systems Engineering. https://www.3ds.com/products-services/catia/products/dymola/
  • Dols, W. S., and G. N. Walton. 2002. CONTAM 2.0 user manual, multizone airflow and contaminant transport analysis software. Technical Report NISTIR 6921, National Institute of Standards and Technology.
  • DUCO. 2019. https://www.duco.eu/be_nl/
  • Eguía-Oller, P., S. Martínez-Mariño, E. Granada-Álvarez, and L. Febrero-Garrido. 2021. Empirical validation of a multizone building model coupled with an air flow network under complex realistic situations. Energy and Buildings 249:111197. doi:10.1016/j.enbuild.2021.111197.
  • Emmerich, S. J. 2001. Validation of multizone IAQ modeling of residential-scale buildings: A review. Atlanta, GA: ASHRAE Transactions.
  • EOUA. 2001. IDA indoor climate and energy. https://www.equa.se/en/ida-ice
  • EPA. 2021. Indoor Air Quality: What are the trends in indoor air quality and their effects on human health? https://www.epa.gov/report-environment/indoor-air-quality
  • EU. 2003. Energy performance of buildings directive 2002/91/EC. European Parliament and Council of the European Union.
  • EU. 2018. Amending energy performance of buildings directive 2018/844/EU. Parliament and Council of the European Union.
  • EU. 2020. Energy performance of buildings directive. Brussels, Belgium: European Commission Department of Energy.
  • FEMP. 2008. M&V Guidelines: Measurement and Verification for Federal Energy Projects Version 3.0.
  • Feustel, H. E. 1998. COMIS – An international multizone airflow and contaminant transport model. Technical Report LBNL-42182, Lawrence Berkeley National Laboratory, Berkeley, CA.
  • Foucquier, A., S. Robert, F. Suard, L. Stéphan, and A. Jay. 2013. State of the art in building modelling and energy performances prediction: A review. Renewable and Sustainable Energy Reviews 23:272–88. doi:10.1016/j.rser.2013.03.004
  • González, V. G., and C. F. Bandera. 2022. A building energy models calibration methodology based on inverse modelling approach. Building Simulation 15 (11):1883–98. doi:10.1007/s12273-022-0900-5
  • Gonzalo, F., M. Griffin, J. Laskosky, P. Yost, and R. A. González-Lezcano. 2022. Assessment of indoor air quality in residential buildings of new england through actual data. Sustainability 14 (2):739. doi:10.3390/su14020739
  • Grafana. 2019. https://grafana.com/
  • Heijmans, N., N. Van Den Bossche, and A. Janssens. 2007. Berekeningsmethode Gelijkwaardigheid Voor Innovatieve Ventilatiesystemen in Het Kader van de EPB-Regelgeving. WTCB, Ghent University.
  • Hukseflux Thermal Sensors B.V. 2019. https://www.hukseflux.com/
  • IEA EBC Annex 58. 2017. Reliable building energy performance characterisation based on full scale dynamic measurements (Annex 58).
  • IEA. 2019a. Global status report for buildings and construction 2019: towards a zero-emissions, efficient and resilient buildings and construction sector. International Energy Agency.
  • IEA. 2019b. Energy efficiency: Buildings. The global exchange for energy efficiency policies, data and analysis. https://www.iea.org/topics/energyefficiency/buildings/.
  • IPMVP. 2003. International performance measurement & verification protocol: concepts and option for determining energy savings in new construction.
  • Jorissen, F., G. Reynders, R. Baetens, D. Picard, D. Saelens, and L. Helsen. 2018. Implementation and verification of the IDEAS building energy simulation library. Journal of Building Performance Simulation 11 (6):669–88. doi:10.1080/19401493.2018.1428361
  • Kersken, M., and P. Strachan. 2021. EBC Annex 71: Building Energy Performance Assessment Based on In-situ Measurements: Description and Results of the Validation of Building Energy Simulation Programs. IEA EBC Annex 71. https://iea-ebc.org/projects/project?AnnexID=71.
  • Kersken, M., P. Strachan, E. Mantesi, and G. Flett. 2020. Whole building validation for simulation programs including synthetic users and heating systems: Experimental design. E3S Web of Conferences 172:22003–10. 1051/e3sconf/202017222003. doi:10.1051/e3sconf/202017222003
  • Klein, K. A, 1996. A transient simulation and program. Madison, WI: Solar Energy Laboratory.
  • Klepeis, N. E., W. C. Nelson, W. R. Ott, J. P. Robinson, A. M. Tsang, P. Switzer, J. V. Behar, S. C. Hern, and W. H. Engelmann. 2001. The national human activity pattern survey (NHAPS): A resource for assessing exposure to environmental pollutants. Journal of Exposure Analysis and Environmental Epidemiology 11 (3):231–52. doi:10.1038/sj.jea.7500165
  • KNMI. 2019. Royal Netherlands Meteorological Institute. https://daggegevens.knmi.nl/
  • Kubba, S. 2017. Handbook of green building design and construction. 2nd ed. Oxford/Cambridge, MA: Butterworth-Heinemann. ISBN 9780128104330.
  • Laumbach, R., Q. Meng, and H. Kipen. 2015. What can individuals do to reduce personal health risks from air pollution? Journal of Thoracic Disease 7 (1):96–107. doi:10.3978/j.issn.2072-1439.2014.12.21.
  • Leivo, V., M. Mari Turunen, A. Aaltonen, M. Kiviste, L. Du, and U. Haverinen-Shaughnessy. 2016. Impacts of energy retrofits on ventilation rates, CO2-levels and occupants’ satisfaction with indoor air quality. Energy Procedia. 96:260–5. doi:10.1016/j.egypro.2016.09.148
  • Mannan, M., and S. G. Al-Ghamdi. 2021. Indoor air quality in buildings: a comprehensive review on the factors influencing air pollution in residential and commercial structure. International Journal of Environmental Research and Public Health 18 (6):3276. doi:10.3390/ijerph18063276.
  • MathWorks, S. 1984. https://www.mathworks.com/products/simulink.html
  • McGill, G., L. O. Oyedele, K. McAllister, and M. Qin. 2016. Effective indoor air quality for energy-efficient homes: A comparison of UK rating systems. Architectural Science Review 59 (2):159–73. doi:10.1080/00038628.2015.1078222
  • Megri, A., and F. Haghighat. 2007. Zonal modeling for simulating indoor environment of buildings: review, recent developments, and applications. HVAC&R Research 13 (6):887–905. doi:10.1080/10789669.2007.10391461
  • Netatmo. 2019. https://www.netatmo.com/nl-be
  • OpenModelica. 2007. https://openmodelica.org/
  • Robinson, J., and W. C. Nelson. 1995. National human activity pattern survey data base USEPA, Research Triangle Park, NC.
  • Rode, C., and K. Grau. 2003. Whole building hygrothermal simulation model. ASHRAE Transactions 109:572–82.
  • Rode, C., and K. Grau. 2004. Integrated calculation of hygrothermal conditions of buildings. Publication A41-T1-DK-04-1. Presentation for IEA Annex 41 meeting, Zurich, Switzerland.
  • Ruiz, G. R., and C. F. Bandera. 2017. Validation of calibrated energy models: common errors. Energies 10 (10):1587. doi:10.3390/en10101587.
  • Schweiger, G., G. Engel, J.-P. Schöggl, I. Hafner, T. Nouidui, and C. Gomes. 2020. Co-simulation – An empirical survey: applications, recent developments and future challenges. SNE Simulation Notes Europe 30 (2):73–6. doi:10.11128/sne.30.sn.10516. doi:10.11128/sne.30.sn.10516
  • Strachan, P., K. Svehla, I. Heusler, and M. Kersken. 2016. Whole model empirical validation on a full-scale building. Journal of Building Performance Simulation 9 (4):331–50. doi:10.1080/19401493.2015.1064480
  • Stuart, B., and F. Dusan. 2007. Occupant comfort in UK offices – How adaptive comfort theories might influence future low energy office refurbishment strategies. Energy and Buildings 39:837–46.
  • Trocmé Maxime. 2009. Aide au choix de conception de bâtiments économes en énergie. PhD thesis., Ecole Nationale Supérieure des Mines de Paris.
  • U.S. Department of Energy (DOE). 2001. EnergyPlus. https://www.energy.gov/eere/buildings/downloads/energyplus-0
  • van der Mass, J., C. A. Roulet, and J. A. Hertig. 1989. Some aspects of gravity driven airflow through large apertures in buildings. ASHRAE Transactions 95 (2):573–83.
  • Van Hove, M., J. Borrajo Bastero, E. Van Kenhove, M. Delghust, and J. Laverge. 2022. Indoor Climate Prediction Performance of Dynamic BES-Models in Dymola. Proceedings of the 41st AIVC – ASHRAE IAQ Joint Conference. Athens.
  • Van Hove, M. Y. C., M. Delghust, and J. Laverge. 2023b. Uncertainty and sensitivity analysis of building stock energy models: Sampling procedure, stock size and Sobol’ convergence. Journal of Building Performance Simulation 1–23. doi:10.1080/19401493.2023.2201816
  • Van Hove, M. Y. C., M. Deurinck, W. Lameire, J. Laverge, A. Janssens, and M. Delghust. 2023a. Large-scale statistical analysis and modelling of real and regulatory total energy use in existing single-family houses in Flanders. Building Research & Information 51 (2):203–22. doi:10.1080/09613218.2022.2113023.
  • Vardoulakis, S., C. Dimitroulopoulou, J. Thornes, K.-M. Lai, J. Taylor, I. Myers, C. Heaviside, A. Mavrogianni, C. Shrubsole, Z. Chalabi, et al. 2015. Impact of climate change on the domestic indoor environment and associated health risks in the UK. Environment International 85:299–313. doi:10.1016/j.envint.2015.09.010
  • Wetter, M. 2005. BuildOpt – A new building energy simulation program that is built on smooth models. Building and Environment 40 (8):1085–92. doi:10.1016/j.buildenv.2004.10.003. doi:10.1016/j.buildenv.2004.10.003
  • Wetter, M. 2006. Multizone Airflow Model in Modelica. Proceedings of the 5th International Modelica Conference, 2:431–40.
  • WHO. 2018. The ‘Indoor Generation’ new, global research shows vast misconceptions regarding how much time people spend indoors, understanding of potential health impacts of indoor air pollutants, especially for children.
  • Woloszyn, M., G. Rusaouen, and D. Covalet. 2004. Whole building simulation tools: Clim2000. Publication A41-T1-F-04-3. Presentation for IEA Annex 41 meeting Zurich, Switzerland.
  • Yang, X. D., J. Srebric, X. T. Li, and G. Q. He. 2004. Performance of three air distribution systems in VOC removal from an area source. Building and Environment 39 (11):1289–99. doi:10.1016/j.buildenv.2004.03.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.