155
Views
0
CrossRef citations to date
0
Altmetric
Articles

Variable refrigerant flow heat pump model with estimated parameters and emulated controller based on manufacturer data

ORCID Icon & ORCID Icon
Pages 341-358 | Received 01 May 2023, Accepted 16 Oct 2023, Published online: 14 Dec 2023

References

  • ASHRAE. 2014. Measurement of energy and demand savings. ASHRAE Guideline 14:18.
  • Braun, J. E., S. A. Klein, and J. W. Mitchell. 1989. Effictiveness models for cooling towers and cooling coils. ASHRAE Transactions 95 (2):164–74.
  • Chen, Y., N. Halm, E. A. Groll, and J. E. Braun. 2000. A comprehensive model of scroll compressors, part II: Overall scroll compressor modeling. Paper presented at the International Compressor Engineering Conference at Purdue Purdue University, West Lafayette, IN, July 25–28.
  • Cheung, H., and J. E. Braun. 2014. Component-based, gray-box modeling of ductless multi-split heat pump systems. International Journal of Refrigeration 38:30–45. doi:10.1016/j.ijrefrig.2013.10.007.
  • Coakley, D., P. Raftery, and M. Keane. 2014. A review of methods to match building energy simulation models to measured data. Renewable and Sustainable Energy Reviews 37:123–41. doi:10.1016/j.rser.2014.05.007.
  • Elliott, M. S., and B. P. Rasmussen. 2009. A model-based predictive supervisory controller for multi-evaporator HVAC systems. In 2009 American Control Conference, St. Louis, MO, USA, 3669–74. doi:10.1109/acc.2009.5160498.
  • Goetzler, W. 2007. Variable refrigerant flow systems. ASHRAE Journal 49 (4):24–31.
  • Hong, T., K. Sun, R. Zhang, R. Hinokuma, S. Kasahara, and Y. Yura. 2016. Development and validation of a new variable refrigerant flow system model in EnergyPlus. Energy and Buildings 117:399–411. doi:10.1016/j.enbuild.2015.09.023.
  • Hydeman, M., and K. Gillespie. 2002. Tools and techniques to calibrate electric chiller component model. ASHRAE Transactions 108 (1):733–41.
  • Jin, H., and J. D. Spitler. 2002. A parameter estimation based model of water-to-water heat pumps for use in energy calculation programs. ASHRAE Transactions 108 (Part 1):3–17.
  • Kibo, K., M. Hirota, Y. Teranishi, Y. Miyaoka, K. Nagamatsu, T. Namiwo, Y. Yura, T. Kotani, and S. Kasahara. 2016. Development of high efficiency VRF systems under partial heat load for commercial buildings. In CLIMA 2016 – 12th REHVA World Congress, Aalborg, Denmark, May 22–25.
  • Kim, D., S. J. Cox, H. Cho, and P. Im. 2018. Model calibration of a variable refrigerant flow system with a dedicated outdoor air system: A case study. Energy and Buildings 158:884–96. doi:10.1016/j.enbuild.2017.10.049.
  • Konhäuser, K., S. Wenninger, T. Werner, and C. Wiethe. 2022. Leveraging advanced ensemble models to increase building energy performance prediction accuracy in the residential building sector. Energy and Buildings 269:112242. doi:10.1016/j.enbuild.2022.112242.
  • Li, P., Y. Li, J. E. Seem, H. Qiao, X. Li, and J. Winkler. 2014. Recent advances in dynamic modeling of HVAC equipment. Part 2: Modelica-based modeling. HVAC&R Research 20 (1):150–61. doi:10.1080/10789669.2013.836876.
  • Li, Y., J. Wu, and S. Shiochi. 2009. Modeling and energy simulation of the variable refrigerant flow air conditioning system with water-cooled condenser under cooling conditions. Energy and Buildings 41 (9):949–57. doi:10.1016/j.enbuild.2009.04.002.
  • Lin, X., H. Lee, Y. Hwang, and R. Radermacher. 2015. A review of recent development in variable refrigerant flow systems. Science and Technology for the Built Environment 21 (7):917–33. doi:10.1080/23744731.2015.1071987.
  • Mbaye, A., and M. Cimmino. 2021. A parameter-estimation model for variable refrigerant flow heat pump systems. Paper presented at the 13th IEA Heat Pump Conference, Jeju, Korea, April 26–29.
  • McElgin, J., and D. C. Wiley. 1940. Calculation of coil surface areas for air cooling and dehumidification. Heating, Piping and Air Conditioning 12 (1):195–201.
  • Pachano, J. E., A. Peppas, and C. F. Bandera. 2022. Seasonal adaptation of VRF HVAC model calibration process to a Mediterranean climate. Energy and Buildings 261:111941. doi:10.1016/j.enbuild.2022.111941.
  • Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12:2825–30. doi:10.48550/arXiv.1201.0490.
  • Petrus, I. 2021. The proprietary roadblocks stunting the future of VRF design. Troy, MI: Engineered Systems.
  • Raustad, R. 2013. A variable refrigerant flow heat pump computer model in EnergyPlus. ASHRAE Transactions 119 (Pt 1, 119):299–308.
  • Reddy, T. A. 2006. Literature review on calibration of building energy simulation programs: Uses, problems, procedures, uncertainty, and tools. ASHRAE Transactions 112 (Pt 1, 112):226–40.
  • Robertson, J., B. Polly, and J. Collis. 2013. Evaluation of automated model calibration techniques for residential building energy simulation. Golden, CO: National Renewable Energy Laboratory.
  • Sagi, O., and L. Rokach. 2018. Ensemble learning: A survey. WIREs Data Mining and Knowledge Discovery 8 (4):e1249. doi:10.1002/widm.1249.
  • Sharma, C., and R. Raustad. 2013. Compare energy use in variable refrigerant flow heat pumps field demonstration and computer model. ASHRAE Journal 119 (2):1–8.
  • Southard, L. E., X. Liu, and J. D. Spitler. 2014a. Performance of HVAC systems at ASHRAE HQ part.1. ASHRAE Journal 56 (9):14–22.
  • Southard, L. E., X. Liu, and J. D. Spitler. 2014b. Performance of HVAC systems at ASHRAE HQ part.2. ASHRAE Journal 56 (12):12–23.
  • Sun, H., G. Ding, H. Hu, T. Ren, G. Xia, and G. Wu. 2017. A general simulation model for variable refrigerant flow multi-split air conditioning system based on graph theory. International Journal of Refrigeration 82:22–35. doi:10.1016/j.ijrefrig.2017.07.003.
  • Tu, Q., D. Zou, C. Deng, J. Zhang, L. Hou, M. Yang, G. Nong, and Y. Feng. 2016. Investigation on output capacity control strategy of variable refrigerant flow air conditioning system with multi-compressor. Applied Thermal Engineering 99:280–90. doi:10.1016/j.applthermaleng.2015.12.102.
  • Virtanen, P., R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, et al. 2020. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nature Methods 17 (3):261–72. doi:10.1038/s41592-019-0686-2.
  • Wetter, M., M. Fuchs, P. Grozman, L. Helsen, F. Jorissen, D. Müller, C. Nytsch-Geusen, D. Picard, P. Sahlin, and M. Thorade. 2015. IEA EBC Annex 60 Modelica Library - An international collaboration to develop a free open-source model library for buildings and community energy systems. Paper presented at the International Conference of the International Buildings Performance Simulation Association, Hyderabad, India.
  • Winandy, E., C. Saavedra, and J. Lebrun. 2002. Experimental analysis and simplified modelling of a hermetic scroll refrigeration compressor. Applied Thermal Engineering 22 (2):107–20. doi:10.1016/s1359-4311(01)00083-7.
  • Wu, C., Z. Xingxi, and D. Shiming. 2005. Development of control method and dynamic model for multi-evaporator air conditioners (MEAC). Energy Conversion and Management 46 (3):451–65. doi:10.1016/j.enconman.2004.03.004.
  • Xiangguo, X., P. Yan, D. Shiming, X. Liang, and C. Mingyin. 2013. Experimental study of a novel capacity control algorithm for a multi-evaporator air conditioning system. Applied Thermal Engineering 50 (1):975–84. doi:10.1016/j.applthermaleng.2012.08.007.
  • Yan, H., S. Deng, and M-y Chan. 2016. A novel capacity controller for a three-evaporator air conditioning (TEAC) system for improved indoor humidity control. Applied Thermal Engineering 98:1251–62. doi:10.1016/j.applthermaleng.2016.01.052.
  • Yan, P., X. Xiangguo, X. Liang, and D. Shiming. 2012. A modeling study on the effects of refrigerant pipeline length on the operational performance of a dual-evaporator air conditioning system. Applied Thermal Engineering 39:15–25. doi:10.1016/j.applthermaleng.2012.01.006.
  • Yun, G. Y., and K. Song. 2017. Development of an automatic calibration method of a VRF energy model for the design of energy efficient buildings. Energy and Buildings 135:156–65. doi:10.1016/j.enbuild.2016.11.060.
  • Zhou, Y. P., J. Y. Wu, R. Z. Wang, and S. Shiochi. 2007. Energy simulation in the variable refrigerant flow air-conditioning system under cooling conditions. Energy and Buildings 39 (2):212–20. doi:10.1016/j.enbuild.2006.06.005.
  • Zhou, Y. P., J. Y. Wu, R. Z. Wang, S. Shiochi, and Y. M. Li. 2008. Simulation and experimental validation of the variable-refrigerant-volume (VRV) air-conditioning system in EnergyPlus. Energy and Buildings 40 (6):1041–7. doi:10.1016/j.enbuild.2007.04.025.
  • Zhu, Y., X. Jin, Z. Du, B. Fan, and S. Fu. 2013. Generic simulation model of multi-evaporator variable refrigerant flow air conditioning system for control analysis. International Journal of Refrigeration 36 (6):1602–15. doi:10.1016/j.ijrefrig.2013.04.019.
  • Zhu, Y., X. Jin, Z. Du, and X. Fang. 2015. Online optimal control of variable refrigerant flow and variable air volume combined air conditioning system for energy saving. Applied Thermal Engineering 80:87–96. doi:10.1016/j.applthermaleng.2015.01.030.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.