15,234
Views
31
CrossRef citations to date
0
Altmetric
Review Articles

Optical Emission Spectroscopic (OES) analysis for diagnostics of electron density and temperature in non-equilibrium argon plasma based on collisional-radiative model

ORCID Icon
Article: 1592707 | Received 24 Dec 2018, Accepted 05 Mar 2019, Published online: 31 Mar 2019

References

  • Lieberman MA, Lichtenberg AJ. Principles of plasma discharges and materials processing. Hoboken, NJ: Wiley; 2005.
  • Fridman A. Plasma Chemistry. Cambridge: Cambridge University Press; 2008.
  • Hippler R, Kersten H, Schmidt M, et al. Low temperature plasmas. Weinheim, Germany: Wiley; 2008. vol. 257–281.
  • d’Agostino R, Favia P, Kawai Y, et al. Advanced plasma technology. Weinheim, Germany: Wiley; 2008.
  • Boulos MI, Fauchais P, Pfender E. Thermal Plasmas. New York, NY: Springer; 1994.
  • Solonenko OP. Thermal plasma torches and technologies. Cambridge: Cambridge Int Science Publish; 2000.
  • Nojiri K. Dry etching technology for semiconductors. New York, NY: Springer; 2015.
  • Bia Z-H, Liu Y-X, Jiang W, et al. A brief review of dual-frequency capacitively coupled discharges. Current Appl Phys. 2011;11:s2.
  • Ohtsu Y. Physics of high-density radio frequency capacitively coupled plasma with various electrodes and its applications. In: Plasma science and technology - basic fundamentals and modern applications. Ed. by Jelassi H. and Benredjem D., p. 209. Rijeka, Croatia: InTech Open Publishers; 2018. DOI:10.5772/intechopen.78387
  • Lee H-C. Review of inductively coupled plasmas: nano-applications and bistable hysteresis physics. Appl Phys Rev. 2018;5:011108.
  • Lei F, Li X-P, Liu Y-M, et al. Simulation of a large size inductively coupled plasma generator and comparison with experimental data. AIP Adv. 2018;8:015003.
  • Geller R. Electron cyclotron resonance ion sources and ECR plasmas. London, UK: CRC Press; 1996.
  • Tarey RD, Ganguli A, Sahu D, et al. Studies on plasma production in a large volume system using multiple compact ECR plasma sources. Plasma Sources Sci Technol. 2016;26:015009.
  • Menéndez A, Sánchez P, Gómez D. Deposition of thin films: PECVD process. In: Silicon based thin film solar cells. Ed. by Murri R, Sharjah, UAE: Bentham Science; 2013. p. 29–57. DOI:10.2174/9781608055180113010006.
  • Oehrlein GS, Hamaguchi S. Foundations of low-temperature plasma enhanced materials synthesis and etching. Plasma Sources Sci Technol. 2018;27:023001.
  • Dato A. Graphene synthesized in atmospheric plasmas—A review. J Mater Res. 2019;34:214.
  • Kim J-H, Sakakita H, Itagaki H. Low-temperature graphene growth by forced convection of plasma-excited radicals. Nano Lett. 2019. Article ASAP. DOI:10.1021/acs.nanolett.8b03769
  • Kovala NN, Ryabchikov AI, Sivin DO, et al. Low-energy high-current plasma immersion implantation of nitrogen ions in plasma of non-self-sustained arc discharge with thermionic and hollow cathodes. Surf Coat Technol. 2018;340:152.
  • Scheuer CJ, Zanetti FI, Cardoso RP, et al. Ultra-low—to high-temperature plasma-assisted nitriding: revisiting and going further on the martensitic stainless steel treatment. Mater Res Express. 2018;6:026529.
  • Toyokuni S, Ikehara Y, Kikkawa F, et al. Plasma medical science. Cambridge, MA: Academic Press; 2018.
  • Metelmann H-R, von Woedtke T, Weltmann K-D. Comprehensive clinical plasma medicine. New York, NY: Springer; 2018.
  • Fridman A, Friedman G. Plasma Medicine. Chichester, UK: Wiley; 2013.
  • Misra NN, Schlüter OK, Cullen PJ. Cold plasma in food and agriculture. London, UK: Elsevier; 2016.
  • Yang Y, Cho YI, Fridman A. Plasma discharge in liquid: water treatment and applications. Boca Raton, FL: CRC Press; 2017.
  • Shishoo R. Plasma Technologies for Textiles. Cambridge, UK: Elsevier; 2007.
  • Nema SK, Jhala PB. Plasma technologies for textile and apparel. New Delhi, India: CRC Press; 2014.
  • Ochkin VN. Spectroscopy of low temperature plasma. Weinheim, Germany: Wiley; 2009.
  • Capitelli M, Celiberto R, Colonna G, et al. Fundamental aspects of plasma chemical physics – kinetics. New York, NY: Springer; 2016.
  • Nikiforov AY, Leys C, Gonzalez MA, et al. Electron density measurement in atmospheric pressure plasma jets: stark broadening of hydrogenated and non-hydrogenated lines. Plasma Sources Sci Technol. 2015;24:034001.
  • Park S, Choe W, Kim H, et al. Continuum emission-based electron diagnostics for atmospheric pressure plasmas and characteristics of nanosecond-pulsed argon plasma jets. Plasma Sources Sci Technol. 2015;24:034003.
  • Xu KG, Doyle SJ, Measurement of atmospheric pressure microplasma jet with Langmuir probes. Vac J. Sci Technol A. 2016;34:051301.
  • Trenchev G, Kolev S, Kissovski Z. Modeling a Langmuir probe in atmospheric pressure plasma at different EEDFs. Plasma Sources Sci Technol. 2017;26:055013.
  • Fujimoto T. Plasma Spectroscopy. Oxford: Clarendon Press; 2004.
  • Fujimoto T. Kinetics of ionization-recombination of a plasma and population density of excited ions. I. equilibrium plasma. J Phys Soc Jpn. 1979;47:265.
  • Fujimoto T. Kinetics of ionization-recombination of a plasma and population density of excited ions. II. Ionizing plasma. J Phys Soc Jpn. 1979;47:273.
  • Fujimoto T. Kinetics of ionization-recombination of a plasma and population density of excited ions. III. Recombining plasma–high-temperature case. J Phys Soc Jpn. 1980;49:1561.
  • Fujimoto T. Kinetics of ionization-recombination of a plasma and population density of excited ions. IV. Recombining plasma–low-temperature case. J Phys Soc Jpn. 1980;49:1569.
  • Fujimoto T. Kinetics of ionization-recombination of a plasma and population density of excited ions. V. Ionization-recombination and equilibrium plasma. J Phys Soc Jpn. 1985;54:2905.
  • Kano K, Akatsuka H. Spectroscopic measurement of electron temperature and density in argon plasmas based on collisional-radiative model. Advances in plasma physics research. New York: NOVA Science Publishers. F. Gerard. 2002. Vol. 3. 55.
  • Vlček J. A collisional-radiative model applicable to argon discharges over a wide range of conditions. I. Formulation and basic data. J Phys D Appl Phys. 1989;22:623.
  • Vlček J, Pelikán V. A collisional-radiative model applicable to argon discharges over a wide range of conditions. II. Application to low-pressure, hollow-cathode arc and low-pressure glow discharges. J Phys D Appl Phys. 1989;22:632.
  • Vlček J, Pelikán V. A collisional-radiative model applicable to argon discharges over a wide range of conditions. III. Application to atmospheric and subatmospheric pressure arcs. J Phys D Appl Phys. 1990;23:526.
  • Vlček J, Pelikán V. A collisional-radiative model applicable to argon discharge over a wide range of conditions. IV. Application to inductively coupled plasmas. J Phys D Appl Phys. 1990;24:309.
  • Bogaerts A, Gijbels R, Vlček J. Collisional-radiative model for an argon glow discharge. J Appl Phys. 1998;84:121.
  • Akatsuka H. Excited level populations and excitation kinetics of nonequilibrium ionizing argon discharge plasma of atmospheric pressure. Phys Plasmas. 2009;16:043502.
  • Park HY, Choe WH. Parametric study on excitation temperature and electron temperature in low pressure plasmas. Current Appl Phys. 2009;10:1456.
  • Zhu XM, Tsankov TV, Luggenhölscher D, et al. 2D collisional-radiative model for non-uniform argon plasmas: with or without ‘escape factor’. J Phys D: Appl Phys. 2015;48:085201.
  • Lee Y-K, Moon S-Y, Oh S-J, et al. Determination of metastable level densities in a low-pressure inductively coupled argon plasma by the line-ratio method of optical emission spectroscopy. J Phys D: Appl Phys. 2011;44:285203.
  • Zhu XM, Pu YK. Determination of non-Maxwellian electron energy distributions in low-pressure plasmas by using the optical emission spectroscopy and a collisional-radiative model. Plasma Sources Sci Technol. 2011;13:267.
  • Baeva M. A survey of chemical nonequilibrium in argon arc plasma. Plasma Chem Plasma Proc. 2017;37:513.
  • Laurent M, Desjardins E, Meichelboeck M, et al. Characterization of argon dielectric barrier discharges applied to ethyl lactate plasma polymerization. J Phys D: Appl Phys. 2017;50:475205.
  • Laurent M, Desjardins E, Meichelboeck M, et al. Influence of a square pulse voltage on argon-ethyl lactate discharges and their plasma-deposited coatings using time-resolved spectroscopy and surface characterization. Phys Plasmas. 2018;25:103504.
  • Dev DSD, Krishna E, Das M. Development of a non-contact plasma processing technique to mitigate chemical network defects of fused silica with life enhancement of He-Ne laser device. Opt Laser Technol. 2019;113:289.
  • Desjardins E, Laurent M, Durocher-Jean A, et al. Time-resolved study of the electron temperature and number density of argon metastable atoms in argon-based dielectric barrier discharges. Plasma Sources Sci Technol. 2018;27:015015.
  • Pachuilo MV, Stefani F, Bengtson RD, et al. Dynamics of surface streamer plasmas at atmospheric pressure: mixtures of Argon and Methane. IEEE Trans Plasma Sci. 2017;45:1776.
  • Takahashi R, Fujino T, Okuno Y, Numerical simulation of frozen inert gas plasma MHD generator with collisional-radiative model. 14th International Energy Conversion Engineering Conference, AIAA Propulsion and Energy Forum; Salt Lake City, UT: 2016). DOI:10.2514/6.2016-4523.
  • Fujino T, Ito S, Okuno Y, Numerical study on influences of radiative de-excitation on seed-free magnetohydrodynamic generator. 2018 International Energy Conversion Engineering Conference, AIAA Propulsion and Energy Forum; Cincinnati, OH: 2018. DOI:10.2514/6.2018-4404.
  • Melnikov AD, Usmanov RA, Gavrikov AV, et al. Application of line-intensity-ratio method for measurement of electron temperature of radio-frequency plasma of argon in magnetic field inside the plasma separator. J Phys Conf Ser. 2019;1147:012131.
  • Takeuchi S, Yamada G, Takahashi C, et al. Optical diagnostics of shock-induced argon plasmas based on a simple collisional-radiative model. Trans Jpn Soc Aero Space Sci Aerospace Technol Jpn. 2017;15:a109.
  • Evdokimov KE, Konischev ME, Pichugin VF, et al. Study of argon ions density and electron temperature and density in magnetron plasma by optical emission spectroscopy and collisional-radiative model. Resource-Efficient Technol. 2017;3:187.
  • Bellemans A, Munafò A, Magin TE, et al. Reduction of a collisional-radiative mechanism for argon plasma based on principal component analysis. Phys Plasmas. 2015;22:062108.
  • Bellemans A, Magin TE, Coussement A, et al., MG-local-PCA method for the reduction of a collisional-radiative argon plasma mechanism. 45th AIAA Thermophysics Conf.; Dallas, TX: 2015. DOI:10.2514/6.2015-3105.
  • Kunze H-J. Introduction to plasma spectroscopy. Heidelberg, Germany: Springer; 2009. p. 146.
  • Griem HR. Principles of Plasma Spectroscopy. Cambridge UK: Cambridge University Press; 1997. p. 43.
  • Malyshev MV, Donnelly VM. Trace rare gases optical emission spectroscopy: nonintrusive method for measuring electron temperatures in low-pressure, low-temperature plasmas. Phys Rev E. 1999;60:6016.
  • Chen Z, Donnelly VM, Economou DJ. Measurement of electron temperatures and electron energy distribution functions in dual frequency capacitively coupled CF4/O2 plasmas using trace rare gases optical emission spectroscopy. J Vac Sci Technol A. 2009;27:1159.
  • Boivin S, Glad X, Latrasse L, et al. Probing suprathermal electrons by trace rare gases optical emission spectroscopy in low pressure dipolar microwave plasmas excited at the electron cyclotron resonance. Phys Plasmas. 2018;25:093511.
  • Zhu XM, Pu YK. A simple collisional–radiative model for low-pressure argon discharges. J Phys D: Appl Phys. 2007;40:2533.
  • Zhu XM, Pu YK. Using OES to determine electron temperature and density in low-pressure nitrogen and argon plasmas. Plasma Sources Sci Technol. 2008;17:024002.
  • Zhu XM, Pu YK, Balcon N, et al. Measurement of the electron density in atmospheric-pressure low-temperature argon discharges by line-ratio method of optical emission spectroscopy. J Phys D: Appl Phys. 2009;42:142003.
  • Evdokimov KE, Konishchev ME, Pichugin VF, et al. Determination of the electron density and electron temperature in a magnetron discharge plasma using optical spectroscopy and the collisional-radiative model of argon. Russ Phys J. 2017;60:765.
  • Kano K, Suzuki M, Akatsuka H. Spectroscopic measurement of electron temperature and density in argon plasmas based on collisional-radiative model. Plasma Sources Sci Technol. 2000;9:314.
  • Kano K, Suzuki M, Akatsuka H. Spectroscopic measurement of electron temperature and density in an argon plasma jet based on collisional-radiative model. Contrib Plasma Phys. 2001;41:91.
  • Yamashita Y, Yamazaki F, Nezu A, et al. Diagnostics of low-pressure discharge argon plasma by multi-optical emission line analysis based on the collisional-radiative model. Jpn J Appl Phys. 2019;58:016004. DOI:10.7567/1347-4065/aaf0a8
  • Ezoubtchenko A, Ohtsuki N, Akatsuka H, et al. Measurements of plasma parameters in the direct current discharge for isotope separation. Plasma Sources Sci Technol. 1998;7:136.
  • Akatsuka H. Possibility of electron temperature and density monitoring of argon plasma by intensity ratio measurement of Ar I lines. Proc. 10th Asian-European Intern. Conf. Plasma Surf. Eng. (AEPSE2015); Jeju, South Korea: 2015. p. 21p-B-7.
  • Waseda S, Fujitsuka H, Shinohara S, et al. Optical measurements of high-density helicon plasma by using a high-speed camera and monochromators. Plasma Fusion Res. 2014;9:3406125.
  • Keesee AM, Scime EE. Neutral argon density profile determination by comparison of spectroscopic measurements and a collisional-radiative model (invited). Rev Sci Instrum. 2006;77:10F304.
  • Siepa S, Danko S, Tsankov TV, et al. On the OES line-ratio technique in argon and argon-containing plasmas. J Phys D: Appl Phys. 2014;47:445201.
  • Siepa SL, “Global collisional-radiative model for optical emission spectroscopy of argon and argon-containing plasmas” PhD Thesis, Ruhr University Bochum, (2017) https://d-nb.info/113883548X/34
  • Kuwahara D, Mishio A, Nakagawa T, et al. Development of very small-diameter, inductively coupled magnetized plasma device. Rev Sci Instrum. 2013;84:103502.
  • Nakagawa T, Shinohara S, Kuwahara D. Characteristics of Rf-produced, high-density plasma with very small diameter. JPS Conf Proc. 2014;1:015022.
  • Nakagawa T, Sato Y, Tanaka E, et al. Study on magnetized RF discharge with very small-diameter. Plasma Fusion Res. 2015;10:3401037.
  • Gordillo-Vázquez FJ, Camero M, Gómez-Aleixandre C. Spectroscopic measurements of the electron temperature in low pressure radiofrequency Ar/H2/C2H2 and Ar/H2/CH4 plasmas used for the synthesis of nanocarbon structures. Plasma Sources Sci Technol. 2006;15:42. .
  • Chung TH, Kang HR, Ba MK. Optical emission diagnostics with electric probe measurements of inductively coupled Ar/O2/Ar-O2 plasmas. Phys Plasmas. 2012;19:113502. .
  • Tanişli M, Rafatov İ, Şahin N, et al. Spectroscopic study and numerical simulation of low-pressure radio-frequency capacitive discharge with argon downstream. Canad J Phys. 2017;95:190.
  • Akatsuka H, Yuji T, Fujioka K, et al. Estimation of electron temperature of non-equilibrium argon plasma of atmospheric pressure by OES measurement. Proc 24th Symp Plasma Proc. Osaka, Japan: 2007;24:387.
  • Akatsuka H, Yuji T, Urayama T, et al. Estimation of electron temperature of non-equilibrium argon plasma of atmospheric pressure by OES measurement. Proc. 3rd Int. Con. Cold Atm. Press. Plasma Sources Appl. (CAPPSA-3); Gent, Belgium: 2007. p.1.
  • Crintea DL, Czarnetzki U, Iordanova S, et al. Plasma diagnostics by optical emission spectroscopy on argon and comparison with Thomson scattering. J Phys D Appl Phys. 2009;42:045208.
  • Vries ND, Iordanova E, Hartgers A, et al. A spectroscopic method to determine the electron temperature of an argon surface wave sustained plasmas using a collision radiative model. J Phys D Appl Phys. 2006;39:4194.
  • Yuji T, Fujioka K, Fujii S, et al. Basic characteristics of Ar/N2 atmospheric pressure nonequilibrium microwave discharge plasma jets. IEEJ Trans. 2007;2:473. .
  • Yuji T, Fujii S, Mungkung N, et al. Optical emission characteristics of atmospheric-pressure nonequilibrium microwave discharge and high-frequency DC pulse discharge plasma jets. IEEE Trans Plasma Sci. 2009;37:839.
  • Yuji T, Urayama T, Fujii S, et al. Basic characteristics for PEN film surface modification using atmospheric-pressure nonequilibrium microwave plasma jet. Electron Commun Jpn. 2010;93:42.