10,370
Views
56
CrossRef citations to date
0
Altmetric
Review Articles

Bimetallic nanostructures: combining plasmonic and catalytic metals for photocatalysis

ORCID Icon, &
Article: 1619480 | Received 12 Mar 2019, Accepted 09 May 2019, Published online: 30 May 2019

References

  • U.S. Geological Survey. Mineral commodity summaries 2018: U.S. Geological Survey. U.S. Government Publishing Office. Washington, DC. 2018.
  • Rahimpour MR, Jafari M, Iranshahi D. Progress in catalytic naphtha reforming process: A review. Appl Energy. 2013;109:398–422.
  • Spencer ND, Somorjai GA. Catalysis. Rep Prog Phys. 1983;46:1.
  • Chen Y, Li CW, Kanan MW. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J Am Chem Soc. 2012;134:19969–19972.
  • Link S, El-Sayed MA. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem A. 1999;103:8410–8426.
  • Kelly KL, Coronado E, Zhao LL, et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem A. 2003;107:668–677.
  • Xia Y, Halas NJ. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull. 2005;30:338–348.
  • Willets KA, Van Duyne RP. Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem. 2007;58:267–297.
  • Baffou G, Quidant R. Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photonics Rev. 2013;7:171–187.
  • Mukherjee S, Libisch F, Large N, et al. Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett. 2012;13:240–247.
  • Christopher P, Xin H, Linic S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat Chem. 2011;3:467.
  • Novo C, Funston AM, Mulvaney P. Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nat Nanotechnol. 2008;3:598.
  • Linic S, Aslam U, Boerigter C, et al. Photochemical transformations on plasmonic metal nanoparticles. Nat Mater. 2015;14:567.
  • Araújo TP, Quiroz J, Barbosa EM, et al. Understanding plasmonic catalysis with controlled nanomaterials based on catalytic and plasmonic metals. Curr Opin Colloid Interface Sci. 2019;39:110–122.
  • Aslam U, Rao VG, Chavez S, et al. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat Catal. 2018;1:656.
  • Zhan C, Chen X-J, Yi J, et al. From plasmon-enhanced molecular spectroscopy to plasmon-mediated chemical reactions. Nat Rev Chem. 2018;2:216–230.
  • Zhang Y, He S, Guo W, et al. Surface- plasmon-driven hot electron photochemistry. Chem Rev. 2017;118:2927–2954.
  • Kim M, Lin M, Son J, et al. Hot-electron-mediated photochemical reactions: principles, recent advances, and challenges. Adv Opt Mater. 2017;5:1700004.
  • Sarina S, Zhu H, Jaatinen E, et al. Enhancing catalytic performance of palladium in gold and palladium alloy nanoparticles for organic synthesis reactions through visible light irradiation at ambient temperatures. J Am Chem Soc. 2013;135:5793–5801.
  • Zheng Z, Tachikawa T, Majima T. Single-particle study of Pt-modified Au nanorods for plasmon-enhanced hydrogen generation in visible to near-infrared region. J Am Chem Soc. 2014;136:6870–6873.
  • Aslam U, Chavez S, Linic S. Controlling energy flow in multimetallic nanostructures for plasmonic catalysis. Nat Nanotechnol. 2017;12:1000.
  • Guo J, Zhang Y, Shi L, et al. Boosting hot electrons in hetero-superstructures for plasmon-enhanced catalysis. J Am Chem Soc. 2017;139:17964–17972.
  • Zhou L, Swearer DF, Zhang C, et al. Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science. 2018;362:69–72.
  • Wang F, Li C, Chen H, et al. Plasmonic harvesting of light energy for Suzuki coupling reactions. J Am Chem Soc. 2013;135:5588–5601.
  • Zhang C, Zhao H, Zhou L, et al. Al–Pd nanodisk heterodimers as antenna–reactor photocatalysts. Nano Lett. 2016;16:6677–6682.
  • Huang H, Zhang L, Lv Z, et al. Unraveling surface plasmon decay in core–shell nanostructures toward broadband light-driven catalytic organic synthesis. J Am Chem Soc. 2016;138:6822–6828.
  • Vadai M, Angell DK, Hayee F, et al. In-situ observation of plasmon-controlled photocatalytic dehydrogenation of individual palladium nanoparticles. Nat Commun. 2018;9:4658.
  • Swearer DF, Zhao H, Zhou L, et al. Heterometallic antenna- reactor complexes for photocatalysis. Proc Nat Acad Sci. 2016;113:8916–8920.
  • Lin S-C, Hsu C-S, Chiu S-Y, et al. Edgeless Ag–Pt bimetallic nanocages: in situ monitor plasmon-induced suppression of hydrogen peroxide formation. J Am Chem Soc. 2017;139:2224–2233.
  • Zhang Y-W. Bimetallic nanostructures: shape-controlled synthesis for catalysis, plasmonics, and sensing applications. John Wiley & Sons; Hoboken, NJ. 2018.
  • Langhammer C, Yuan Z, Zoric I, et al. Plasmonic properties of supported Pt and Pd nanostructures. Nano Lett. 2006;6:833–838.
  • Wu B, Lee J, Mubeen S, et al. Plasmon-mediated photocatalytic decomposition of formic acid on palladium nanostructures. Adv Opt Mater. 2016;4:1041–1046.
  • Hammer B, Nørskov JK. Electronic factors determining the reactivity of metal surfaces. Surf Sci. 1995;343:211–220.
  • Hammer B, Nørskov JK. Theoretical surface science and catalysis - calculations and concepts. Adv. Catal. 2000;45:71–129.
  • Hammer B, Nørskov JK. Why gold is the noblest of all the metals. Nature. 1995;376:238.
  • Xin H, Linic S. Communications: exceptions to the d-band model of chemisorption on metal surfaces: the dominant role of repulsion between adsorbate states and metal d-states. J Chem Phys. 2010.
  • Xin H, Vojvodic A, Voss J, et al. Effects of d-band shape on the surface reactivity of transition-metal alloys. Phys Rev B. 2014;89:115114.
  • Cook TR, Dogutan DK, Reece SY, et al. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev. 2010;110:6474–6502.
  • Liang X, Wang P, Li M, et al. Adsorption of gaseous ethylene via induced polarization on plasmonic photocatalyst Ag/AgCl/TiO2 and subsequent photodegradation. Appl Catal B Environ. 2018;220:356–361.
  • Brongersma ML, Halas NJ, Nordlander P. Plasmon-induced hot carrier science and technology. Nat Nanotechnol. 2015;10:25.
  • Christopher P, Moskovits M. Hot charge carrier transmission from plasmonic nanostructures. Annu Rev Phys Chem. 2017;68:379–398.
  • Kale MJ, Avanesian T, Christopher P. Direct photocatalysis by plasmonic nanostructures. ACS Catal. 2013;4:116–128.
  • Baffou G, Quidant R. Nanoplasmonics for chemistry. Chem Soc Rev. 2014;43:3898–3907.
  • Sarina S, Jaatinen E, Xiao Q, et al. Photon energy threshold in direct photocatalysis with metal nanoparticles: key evidence from the action spectrum of the reaction. J Phys Chem Lett. 2017;8:2526–2534.
  • Ciracì C, Hill R, Mock J, et al. Probing the ultimate limits of plasmonic enhancement. Science. 2012;337:1072–1074.
  • Wadell C, Antosiewicz TJ, Langhammer C. Optical absorption engineering in stacked plasmonic Au–siO2–pd nanoantennas. Nano Lett. 2012;12:4784–4790.
  • Li K, Hogan NJ, Kale MJ, et al. Balancing near-field enhancement, absorption, and scattering for effective antenna–reactor plasmonic photocatalysis. Nano Lett. 2017;17:3710–3717.
  • Antosiewicz TJ, Apell SP, Wadell C, et al. Absorption enhancement in lossy transition metal elements of plasmonic nanosandwiches. J Phys Chem C. 2012;116:20522–20529.
  • Tumkur T, Yang X, Zhang C, et al. Wavelength-dependent optical force imaging of bimetallic Al–Au heterodimers. Nano Lett. 2018;18:2040–2046.
  • Griffin S, Montoni NP, Li G, et al. Imaging energy transfer in Pt-decorated Au nanoprisms via electron energy-loss spectroscopy. J Phys Chem Lett. 2016;7:3825–3832.
  • Zheng BY, Zhao H, Manjavacas A, et al. Distinguishing between plasmon-induced and photoexcited carriers in a device geometry. Nat Commun. 2015;6:7797.
  • Cortés E, Xie W, Cambiasso J, et al. Plasmonic hot electron transport drives nano-localized chemistry. Nat Commun. 2017;8:14880.
  • Zou N, Chen G, Mao X, et al. Imaging catalytic hotspots on single plasmonic nanostructures via correlated super-resolution and electron microscopy. ACS Nano. 2018;12:5570—-5579.
  • Kazuma E, Jung J, Ueba H, et al. Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule. Science. 2018;360:521–526.
  • Scholl JA, García-Etxarri A, Koh AL, et al. Observation of quantum tunneling between two plasmonic nanoparticles. Nano Lett. 2013;13:564–569.
  • Zhu W, Esteban R, Borisov AG, et al. Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nat Commun. 2016;7:11495.
  • Tan SF, Wu L, Yang JK, et al. Quantum plasmon resonances controlled by molecular tunnel junctions. Science. 2014;343:1496–1499.
  • Benz F, Schmidt MK, Dreismann A, et al. Single-molecule optomechanics in “picocavities”. Science. 2016;354:726–729.
  • Ebbesen TW. Hybrid light–matter states in a molecular and material science perspective. Acc Chem Res. 2016;49:2403–2412.
  • Thomas A, Lethuillier-Karl L, Nagarajan K, et al. Tilting a ground-state reactivity landscape by vibrational strong coupling. Science. 2019;363:615–619.
  • Scholl JA, Koh AL, Dionne JA. Quantum plasmon resonances of individual metallic nanoparticles. Nature. 2012;483:421.
  • Campos A, Troc N, Cottancin E, et al. Plasmonic quantum size effects in silver nanoparticles are dominated by interfaces and local environments. Nat Phys. 2018;15:275–280.
  • Teperik TV, Nordlander P, Aizpurua J, et al. Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response. Phys Rev Lett. 2013;110:263901.
  • Gilroy KD, Ruditskiy A, Peng H-C, et al. Bimetallic nanocrystals: syntheses, properties, and applications. Chem Rev. 2016;116:10414–10472.
  • Zhang L, Xie Z, Gong J. Shape-controlled synthesis of Au–Pd bimetallic nanocrystals for catalytic applications. Chem Soc Rev. 2016;45:3916–3934.
  • Zaleska-Medynska A, Marchelek M, Diak M, et al. Noble metal-based bimetallic nanoparticles: the effect of the structure on the optical, catalytic and photocatalytic properties. Adv Colloid Interface Sci. 2016;229:80–107.
  • Bligaard T, Nørskov JK. Ligand effects in heterogeneous catalysis and electrochemistry. Electrochim Acta. 2007;52:5512–5516.
  • Logsdail AJ, Paz-Borbon LO, Downing CA. DFT-computed trends in the properties of bimetallic precious metal nanoparticles with core@shell segregation. J Phys Chem C. 2018;122:5721–5730.
  • Laskar M, Skrabalak S. A balancing act: manipulating reactivity of shape-controlled metal nanocatalysts through bimetallic architecture. ?J Mater Chem A. 2016;4:6911–6918.
  • Chen G, Zou N, Chen B, et al. Bimetallic effect of single nanocatalysts visualized by super-resolution catalysis imaging. ACS Cent Sci. 2017;3:1189–1197.
  • Zhang C, Chen B-Q, Li Z-Y, et al. Surface plasmon resonance in bimetallic core–shell nanoparticles. J Phys Chem C. 2015;119:16836–16845.
  • Zhang K, Xiang Y, Wu X, et al. Enhanced optical responses of Au@Pd core/shell nanobars. Langmuir. 2008;25:1162–1168.
  • Chen H, Wang F, Li K, et al. Plasmonic percolation: plasmon-manifested dielectric-to-metal transition. ACS Nano. 2012;6:7162–7171.
  • Zhu C, Zeng J, Tao J, et al. Kinetically controlled overgrowth of Ag or Au on Pd nanocrystal seeds: from hybrid dimers to nonconcentric and concentric bimetallic nanocrystals. J Am Chem Soc. 2012;134:15822–15831.
  • Zeng J, Zhu C, Tao J, et al. Controlling the nucleation and growth of silver on palladium nanocubes by manipulating the reaction kinetics. Angew Chem. 2012;51:2354–2358.
  • Chavez SA, Aslam U, Linic S. Design principles for directing energy and energetic charge flow in multicomponent plasmonic nanostructures. ACS Energy Lett. 2018;3:1590—-1596.
  • Joplin A, Hosseini Jebeli SA, Sung E, et al. Correlated absorption and scattering spectroscopy of individual platinum-decorated gold nanorods reveals strong excitation enhancement in the nonplasmonic metal. ACS Nano. 2017;11:12346–12357.
  • Leary RK, Kumar A, Straney PJ, et al. Structural and optical properties of discrete dendritic Pt nanoparticles on colloidal Au nanoprisms. J Phys Chem C. 2016;120:20843–20851.
  • Zheng Z, Tachikawa T, Majima T. Plasmon-enhanced formic acid dehydrogenation using anisotropic Pd–Au nanorods studied at the single-particle level. J Am Chem Soc. 2015;137:948–957.
  • Lou Z, Fujitsuka M, Majima T. Pt–Au triangular nanoprisms with strong dipole plasmon resonance for hydrogen generation studied by single-particle spectroscopy. ACS Nano. 2016;10:6299–6305.
  • Brown AM, Sundararaman R, Narang P, et al. Experimental and ab initio ultrafast carrier dynamics in plasmonic nanoparticles. Phys Rev Lett. 2017;118:087401.
  • Zhu X, Jia H, Zhu X-M, et al. Selective Pd deposition on Au nanobipyramids and Pd site-dependent plasmonic photocatalytic activity. Adv Funct Mater. 2017;27:1700016.
  • Straney PJ, Diemler NA, Smith AM, et al. Ligand-mediated deposition of noble metals at nanoparticle plasmonic hotspots. Langmuir. 2017;34:1084–1091.
  • Tittl A, Giessen H, Liu N. Plasmonic gas and chemical sensing. Nanophotonics. 2014;3:157–180.
  • Kumar PV, Norris DJ. Tailoring energy transfer from hot electrons to adsorbate vibrations for plasmon-enhanced catalysis. ACS Catal. 2017;7:8343–8350.
  • Ranno L, Dal Forno S, Lischner J. Computational design of bimetallic core-shell nanoparticles for hot-carrier photocatalysis. NPJ Comput Mater. 2018;4:31.
  • Wang D, Li Y. Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications. Adv Mater. 2011;23:1044–1060.
  • Gao F, Goodman DW. Pd–Au bimetallic catalysts: understanding alloy effects from planar models and (supported) nanoparticles. Chem Soc Rev. 2012;41:8009–8020.
  • Kyriakou G, Boucher MB, Jewell AD, et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science. 2012;335:1209–1212.
  • Lucci FR, Liu J, Marcinkowski MD, et al. Selective hydrogenation of 1, 3-butadiene on platinum–copper alloys at the single-atom limit. Nat Commun. 2015;6:8550.
  • Myers H, Wallden L, Karlsson A. Some optical properties of CuPd, AgPd, AuPd and CuMn, AgMn alloys. Philos Mag. 1968;18:725–744.
  • Nugroho FA, Iandolo B, Wagner JB, et al. Bottom-up nanofabrication of supported noble metal alloy nanoparticle arrays for plasmonics. ACS Nano. 2016;10:2871–2879.
  • Kadkhodazadeh S, Nugroho FAA, Langhammer C, et al. Optical property–composition correlation in noble metal alloy nanoparticles studied with EELS. ACS Photonics. 2019.
  • Nugroho FAA, Darmadi I, Zhdanov VP, et al. Universal scaling and design rules of hydrogen-induced optical properties in Pd and Pd-Alloy nanoparticles. ACS Nano. 2018;12:9903–9912.
  • Wadell C, Nugroho FAA, Lidstrom E, et al. Hysteresis-free nanoplasmonic Pd–Au alloy hydrogen sensors. Nano Lett. 2015;15:3563–3570.
  • Barcaro G, Sementa L, Fortunelli A, et al. Optical properties of Pt and Ag– Pt nanoclusters from TDDFT calculations: plasmon suppression by Pt Poisoning. J Phys Chem C. 2014;118:28101–28108.
  • Ringe E, DeSantis CJ, Collins SM, et al. Resonances of nanoparticles with poor plasmonic metal tips. Sci Rep. 2015;5:17431.
  • Mun JH, Chang YH, Shin DO, et al. Monodisperse pattern nanoalloying for synergistic intermetallic catalysis. Nano Lett. 2013;13:5720–5726.
  • Chen P-C, Liu G, Zhou Y, et al. Tip-directed synthesis of multimetallic nanoparticles. J Am Chem Soc. 2015;137:9167–9173.
  • Agrawal A, Cho SH, Zandi O, et al. Localized surface plasmon resonance in semiconductor nanocrystals. Chem Rev. 2018;118:3121–3207.
  • McMahon JM, Schatz GC, Gray SK. Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi. Phys Chem Chem Phys. 2013;15:5415–5423.
  • West PR, Ishii S, Naik GV, et al. Searching for better plasmonic materials. Laser Photonics Rev. 2010;4:795–808.
  • Hartland GV, Besteiro LV, Johns P, et al. What’s so hot about electrons in metal nanoparticles? ACS Energy Lett. 2017;2:1641–1653.
  • Kim Y, Smith JG, Jain PK. Harvesting multiple electron–hole pairs generated through plasmonic excitation of Au nanoparticles. Nat Chem. 2018;10:763.
  • Ma X, Sun H, Wang Y, et al. Electronic and optical properties of strained noble metals: implications for applications based on LSPR. Nano Energy. 2018;53:932–939.
  • Brown AM, Sundararaman R, Narang P, et al. Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry. ACS Nano. 2015;10:957–966.
  • Dal Forno S, Ranno L, Lischner J. Material, size, and environment dependence of plasmon-induced hot carriers in metallic nanoparticles. J Phys Chem C. 2018;122:8517–8527.
  • Marinica D-C, Aizpurua J, Borisov AG. Quantum effects in the plasmon response of bimetallic core-shell nanostructures. Opt Express. 2016;24:23941–23956.
  • Keller EL, Frontiera RR. Ultrafast nanoscale Raman thermometry proves heating is not a primary mechanism for plasmon-driven photocatalysis. ACS Nano. 2018;12:5848–5855.
  • Wu Y, Li G, Camden JP. Probing nanoparticle plasmons with electron energy loss spectroscopy. Chem Rev. 2017;118:2994–3031.
  • Wadell C, Yasuhara A, Sannomiya T. Asymmetric light absorption and radiation of Ag–Cu hybrid nanoparticles. J Phys Chem C. 2017;121:27029–27035.
  • Quiroz J, Barbosa EC, Araujo TP, et al. Controlling reaction selectivity over hybrid plasmonic nanocatalysts. Nano Lett. 2018;18:7289–7297.
  • Wu X, Jaatinen E, Sarina S, et al. Direct photocatalysis of supported metal nanostructures for organic synthesis. J Phys D Appl Phys. 2017;50:283001.
  • Zhang S, Bao K, Halas NJ, et al. Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett. 2011;11:1657–1663.
  • Chan GH, Zhao J, Hicks EM, et al. Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett. 2007;7:1947–1952.
  • Xia F, Wang H, Xiao D, et al. Two-dimensional material nanophotonics. Nat Photonics. 2014;8:899.
  • Li X, Zhu J, Wei B. Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications. Chem Soc Rev. 2016;45:3145–3187.
  • Khan ME, Khan MM, Cho MH. Recent progress of metal–graphene nanos- tructures in photocatalysis. Nanoscale. 2018;10:9427–9440.
  • Hohenester U, Trügler A. MNPBEM–A matlab toolbox for the simulation of plasmonic nanoparticles. Comput Phys Commun. 2012;183:370–381.