6,889
Views
32
CrossRef citations to date
0
Altmetric
Review Articles

Chemical modification of 2D materials using molecules and assemblies of molecules

, &
Article: 1625723 | Received 04 Jan 2019, Accepted 27 May 2019, Published online: 25 Jun 2019

References

  • Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6:451.
  • Georgakilas V, Otyepka M, Bourlinos AB, et al. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev. 2012;112:6156–489.
  • Liu H, Liu Y, Zhu D. Chemical doping of graphene. J Mater Chem. 2011;21:3335–3345.
  • Loh KP, Bao Q, Ang PK, et al. The chemistry of graphene. J Mater Chem. 2010;20:2277–2289.
  • Mali KS, Greenwood J, Adisoejoso J, et al. Nanostructuring graphene for controlled and reproducible functionalization. Nanoscale. 2015;7:1566–1585.
  • Lv R, Li Q, Botello-Méndez AR, et al. A Peptide/MHCII conformer generated in the presence of exchange peptide is substrate for HLA-DM editing. Sci Rep. 2012;2:586.
  • Daukiya L, Nair MN, Cranney M, et al., Functionalization of 2D materials by intercalation. Prog Surf Sci. 2019, 94: 1-20.
  • Li B, Klekachev AV, Cantoro M, et al. Toward tunable doping in graphene FETs by molecular self-assembled monolayers. Nanoscale. 2013;5:9640–9644.
  • Park J, Yan M. Covalent Functionalization of Graphene with Reactive Intermediates. Acc Chem Res. 2013;46:181–189.
  • Niyogi S, Bekyarova E, Itkis ME, et al. Spectroscopy of covalently functionalized graphene. Nano Lett. 2010;10:4061–4066.
  • Sarkar S, Bekyarova E, Haddon RC. Covalent chemistry in graphene electronics. Mater Today. 2012;15:276–285.
  • Greenwood J, Phan TH, Fujita Y, et al. Covalent modification of graphene and graphite using diazonium chemistry: tunable grafting and nanomanipulation. ACS Nano. 2015;9:5520–5535.
  • Daukiya L, Mattioli C, Aubel D, et al. Covalent functionalization by cycloaddition reactions of pristine defect-free graphene. ACS Nano. 2017;11:627–634.
  • Chhowalla M, Shin HS, Eda G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem. 2013;5:263.
  • Lv R, Robinson JA, Schaak RE, et al. Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. Acc Chem Res. 2015;48:56–64.
  • Manzeli S, Ovchinnikov D, Pasquier D, et al. 2D transition metal dichalcogenides. Nat Rev Mater. 2017;2:17033.
  • Zhao Y, Xu K, Pan F, et al. Doping, contact and interface engineering of two-dimensional layered transition metal dichalcogenides transistors. Adv Funct Mater. 2017;27:1603484.
  • Chen X, Berner NC, Backes C, et al. Functionalization of Two‐Dimensional MoS2: On the Reaction Between MoS2 and Organic Thiols. Angew Chem Int Ed. 2016;55:5803–5808.
  • Canton-Vitoria R, Sayed-Ahmad Baraza Y, Pelaez-Fernandez M, et al. Functionalization of MoS2 with 1,2-dithiolanes: toward donor-acceptor nanohybrids for energy conversion. npj 2D Materials and Applications. 2017; Vol. 1. :, Number 13.
  • Ding Q, Czech KJ, Zhao Y, et al. ACS Appl Mater Interfaces. 2017;9:12734–12742.
  • Presolski S, Wang L, Loo AH, et al. Functional nanosheet synthons by covalent modification of transition-metal dichalcogenides. Chem Mater. 2017;29:2066–2073.
  • Sim DM, Kim M, Yim S, et al. Controlled doping of vacancy-containing few-layer MoS2 via highly stable thiol-based molecular chemisorption. ACS Nano. 2015;9:12115–12123.
  • Chou SS, De M, Kim J, et al. Ligand conjugation of chemically exfoliated MoS2. J Am Chem Soc. 2013;135:4584–4587.
  • Makarova M, Okawa Y, Aono M. J Phys Chem C. 2012;116:22411–22416.
  • Tuxen A, Kibsgaard J, Gøbel H, et al. Size threshold in the dibenzothiophene adsorption on MoS2 nanoclusters. ACS Nano. 2010;4:4677–4682.
  • Knirsch KC, Berner NC, Nerl HC, et al. Basal-plane functionalization of chemically exfoliated molybdenum disulfide by diazonium salts. ACS Nano. 2015;9:6018–6030.
  • Chu XS, Yousaf A, Li DO, et al. Direct covalent chemical functionalization of unmodified two-dimensional molybdenum disulfide. Chem Mater. 2018;30:2112–2128.
  • Vishnoi P, Sampath A, Waghmare UV, et al. Covalent Functionalization of Nanosheets of MoS2 and MoSe2 by Substituted Benzenes and Other Organic Molecules. Chem Eur J. 2017;23:886–895.
  • Voiry D, Goswami A, Kappera R, et al. Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nat Chem. 2014;7:45.
  • Bertolazzi S, Gobbi M, Zhao Y, et al. Molecular chemistry approaches for tuning the properties of two-dimensional transition metal dichalcogenides. Chem Soc Rev. 2018;47:6845–6888.
  • Goronzy DP, Ebrahimi M, Rosei F, et al. Supramolecular assemblies on surfaces: nanopatterning, functionality, and reactivity. ACS Nano. 2018;12:7445–7481.
  • Wang QH, Hersam MC. Room-temperature molecular-resolution characterization of self-assembled organic monolayers on epitaxial graphene. Nat Chem. 2009;1:206.
  • Huang H, Chen S, Gao X, et al. Structural and electronic properties of PTCDA thin films on epitaxial graphene. ACS Nano. 2009;3:3431–3436.
  • Lauffer P, Emtsev KV, Graupner R, et al. Molecular and electronic structure of PTCDA on bilayer graphene on SiC(0001) studied with scanning tunneling microscopy. Phys Status Solidi B. 2008;245:2064–2067.
  • Karmel HJ, Garramone JJ, Emery JD, et al. Self-assembled organic monolayers on epitaxial graphene with enhanced structural and thermal stability. Chem Comm. 2014;50:8852–8855.
  • Barja S, Garnica M, Hinarejos JJ, et al. Self-organization of electron acceptor molecules on graphene. Chem Comm. 2010;46:8198–8200.
  • Stradi D, Garnica M, Díaz C, et al. Controlling the spatial arrangement of organic magnetic anions adsorbed on epitaxial graphene on Ru(0001). Nanoscale. 2014;6:15271–15279.
  • Chen W, Chen S, Qi DC, et al. Surface transfer p-type doping of epitaxial graphene. J Am Chem Soc. 2007;129:10418–10422.
  • Mao J, Zhang H, Jiang Y, et al. Tunability of supramolecular Kagome lattices of magnetic phthalocyanines using graphene-based moire patterns as templates. J Am Chem Soc. 2009;131:14136–14137.
  • Yang K, Xiao WD, Jiang YH, et al. Molecule–substrate coupling between metal phthalocyanines and epitaxial graphene grown on Ru(0001) and Pt(111). J Phys Chem C. 2012;116:14052–14056.
  • Ogawa Y, Niu T, Wong SL, et al. Self-assembly of polar phthalocyanine molecules on graphene grown by chemical vapor deposition. J Phys Chem C. 2013;117:21849–21855.
  • Zhang HG, Sun JT, Low T, et al. Assembly of iron phthalocyanine and pentacene molecules on a graphene monolayer grown on Ru(0001). Phys Rev B. 2011;84:245436.
  • Scardamaglia M, Lisi S, Lizzit S, et al. Graphene-induced substrate decoupling and ideal doping of a self-assembled iron-phthalocyanine single layer. J Phys Chem C. 2013;117:3019–3027.
  • Phillipson R, Lockhart de la Rosa CJ, Teyssandier J, et al. Tunable doping of graphene by using physisorbed self-assembled networks. Nanoscale. 2016;8:20017–20026.
  • Prado MC, Nascimento R, Moura LG, et al. Two-dimensional molecular crystals of phosphonic acids on graphene. ACS Nano. 2011;5:394–398.
  • Gobbi M, Bonacchi S, Lian JX, et al. Periodic potentials in hybrid van der Waals heterostructures formed by supramolecular lattices on graphene. Nat Commun. 2017;8:14767.
  • Gobbi M, Bonacchi S, Lian JX, et al. Collective molecular switching in hybrid superlattices for light-modulated two-dimensional electronics. Nat Commun. 2018;9:2661.
  • Hara M, Iwakabe Y, Tochigi K, et al. Anchoring structure of smectic liquid-crystal layers on MoS2 observed by scanning tunnelling microscopy. Nature. 1990;344:228.
  • Cincotti S, Rabe JP. Self-assembled alkane monolayers on MoSe2. and MoS2 Appl Phys Lett. 1993;62:3531–3533.
  • Schreiber F. Structure and growth of self-assembling monolayers. Prog Surf Sci. 2000;65:151–257.
  • Love JC, Estroff LA, Kriebel JK, et al. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev. 2005;105:1103–1170.
  • Wang J, Yu H, Zhou X, et al.. Nat Commun. 2017;8:377.
  • Li Y, Xu C-Y, Hu P, et al. ACS Nano. 2013;7:7795–7804.
  • Lee WH, Park YD. Tuning electrical properties of 2D materials by self-assembled monolayers. Adv Mater Interfaces. 2018;5:1700316.
  • Cheng L, Lee J, Zhu H, et al. Sub-10 nm tunable hybrid dielectric engineering on MoS2 for two-dimensional material-based devices. ACS Nano. 2017;11:10243–10252.
  • Kang D-H, Shim J, Jang SK, et al. Controllable Nondegenerate p-Type Doping of Tungsten Diselenide by Octadecyltrichlorosilane. ACS Nano. 2015;9:1099–1107.
  • Kang D-H, Kim M-S, Shim J, et al. High-performance transition metal dichalcogenide photodetectors enhanced by self-assembled monolayer doping. Adv Funct Mater. 2015;25:4219–4227.
  • Li J, Wierzbowski J, Ceylan Ö, et al. Appl Phys Lett. 2014;105:241116.
  • Rosa CJLDL, Phillipson R, Teyssandier J, et al. Appl Phys Lett. 2016;109:253112.
  • Kiriya D, Tosun M, Zhao P, et al. Air-stable surface charge transfer doping of MoS₂ by benzyl viologen. J Am Chem Soc. 2014;136:7853–7856.
  • Mouri S, Miyauchi Y, Matsuda K. Tunable photoluminescence of monolayer MoS₂ via chemical doping. Nano Lett. 2013;13:5944–5948.
  • Wang J, Ji Z, Yang G, et al. Charge Transfer within the F4TCNQ‐MoS2 van der Waals Interface: Toward Electrical Properties Tuning and Gas Sensing Application. Adv Funct Mater. 2018, 28:1806244.
  • Molina-Mendoza AJ, Vaquero-Garzon L, Leret S, et al. Engineering the optoelectronic properties of MoS2 photodetectors through reversible noncovalent functionalization. Chem Comm. 2016;52:14365–14368.
  • Auwärter W. Hexagonal boron nitride monolayers on metal supports: Versatile templates for atoms, molecules and nanostructures. Surface Science Reports. 2018, 74: 1-95.
  • Schulz F, Drost R, Hämäläinen SK, et al. Templated self-assembly and local doping of molecules on epitaxial hexagonal boron nitride. ACS Nano. 2013;7:11121–11128.
  • Abellán G, Lloret V, Mundloch U, et al. Noncovalent functionalization of black phosphorus. Angew Chem Int Ed. 2016;55:14557–14562.
  • Abellán G, Wild S, Lloret V, et al. fundamental insights into the degradation and stabilization of thin layer black phosphorus. J Am Chem Soc. 2017;139:10432–10440.
  • Korolkov VV, Timokhin IG, Haubrichs R, et al. Supramolecular networks stabilise and functionalise black phosphorus. Nat Commun. 2017;8:1385.
  • Han C, Hu Z, Gomes LC, et al. Surface Functionalization of Black Phosphorus via Potassium toward High-Performance Complementary Devices. Nano Lett. 2017;17:4122–4129.
  • Bekyarova E, Itkis ME, Ramesh P, et al. Chemical Modification of Epitaxial Graphene: Spontaneous Grafting of Aryl Groups J Am Chem Soc. 2009;131:1336–1337.
  • Sinitskii A, Dimiev A, Corley DA, et al. Kinetics of Diazonium Functionalization of Chemically Converted Graphene Nanoribbons. ACS Nano. 2010;4:1949–1954.
  • Sharma R, Baik JH, Perera CJ, et al. Anomalously Large Reactivity of Single Graphene Layers and Edges toward Electron Transfer Chemistries. Nano Lett. 2010;10:398–405.
  • Huang P, Zhu H, Jing L, et al. Graphene Covalently Binding Aryl Groups: Conductivity Increases Rather than Decreases. ACS Nano. 2011;5:7945–7949.
  • Paulus GLC, Wang QH, Strano MS. Covalent Electron Transfer Chemistry of Graphene with Diazonium Salts. Acc Chem Res. 2013;46:160–170.
  • Wang QH, Jin Z, Kim KK, et al. Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography. Nat Chem. 2012;4:724.
  • Shih C-J, Wang QH, Jin Z, et al. Disorder Imposed Limits of Mono- and Bilayer Graphene Electronic Modification Using Covalent Chemistry. Nano Lett. 2013;13:809–817.
  • Sarkar S, Bekyarova E, Niyogi S, et al. Diels-Alder chemistry of graphite and graphene: graphene as diene and dienophile. J Am Chem Soc. 2011;133:3324–3327.
  • Li J, Li M, Zhou -L-L, et al. Click and Patterned Functionalization of Graphene by Diels–Alder Reaction. J Am Chem Soc. 2016;138:7448–7451.
  • Sarkar S, Bekyarova E, Haddon RC. Chemistry at the Dirac Point: Diels–Alder Reactivity of Graphene. Acc Chem Res. 2012;45:673–682.
  • Bian S, Scott AM, Cao Y, et al. Covalently Patterned Graphene Surfaces by a Force-Accelerated Diels–Alder Reaction. J Am Chem Soc. 2013;135:9240–9243.
  • Zhong X, Jin J, Li S, et al. Aryne cycloaddition: highly efficient chemical modification of graphene. Chem Comm. 2010;46:7340–7342.
  • Zhong X, Yu H, Zhuang G, et al. Pyridyne cycloaddition of graphene: “external” active sites for oxygen reduction reaction. J Mater Chem A. 2014;2:897–901.
  • Choi J, Kim K-J, Kim B, et al. Covalent Functionalization of Epitaxial Graphene by Azidotrimethylsilane. J Phys Chem C. 2009;113:9433–9435.
  • Strom TA, Dillon EP, Hamilton CE, et al. Nitrene addition to exfoliated graphene: a one-step route to highly functionalized graphene. Chem Comm. 2010;46:4097–4099.
  • Chua CK, Ambrosi A, Pumera M. Introducing dichlorocarbene in graphene. Chem Comm. 2012;48:5376–5378.
  • Niyogi S, Bekyarova E, Hong J, et al. Covalent Chemistry for Graphene Electronics. J Phys Chem Lett. 2011;2:2487–2498.
  • Hossain MZ, Walsh MA, Hersam MC. Scanning Tunneling Microscopy, Spectroscopy, and Nanolithography of Epitaxial Graphene Chemically Modified with Aryl Moieties. J Am Chem Soc. 2010;132:15399–15403.
  • Kaplan A, Yuan Z, Benck JD, et al. Current and future directions in electron transfer chemistry of graphene. Chem Soc Rev. 2017;46:4530–4571.
  • Xia Z, Leonardi F, Gobbi M, et al. Electrochemical Functionalization of Graphene at the Nanoscale with Self-Assembling Diazonium Salts. ACS Nano. 2016;10:7125–7134.
  • Tahara K, Ishikawa T, Hirsch BE, et al. Self-Assembled Monolayers as Templates for Linearly Nanopatterned Covalent Chemical Functionalization of Graphite and Graphene Surfaces. ACS Nano. 2018;12:11520–11528.
  • Bueno RA, Martínez JI, Luccas RF, et al. Highly selective covalent organic functionalizationof epitaxial graphene. Nat Commun. 2017;8:15306.
  • Altenburg SJ, Lattelais M, Wang B, et al. Reaction of Phthalocyanines with Graphene on Ir(111). J Am Chem Soc. 2015;137:9452–9458.
  • Kumar A, Banerjee K, Dvorak M, et al. Charge-Transfer-Driven Nonplanar Adsorption of F4TCNQ Molecules on Epitaxial Graphene. ACS Nano. 2017;11:4960–4968.
  • Jacobsen A, Koehler FM, Stark WJ, et al. Towards electron transport measurements in chemically modified graphene: effect of a solvent. New J Phys. 2010;12:125007.
  • Zhang H, Bekyarova E, Huang J-W, et al. Aryl Functionalization as a Route to Band Gap Engineering in Single Layer Graphene Devices. Nano Lett. 2011;11:4047–4051.
  • Backes C, Berner NC, Chen X, et al. Functionalization of Liquid-Exfoliated Two-Dimensional 2H-MoS2. Angew Chem Int Ed. 2015;54:2638–2642.
  • Cai M, Zhang F, Zhang C, et al. Cobaloxime anchored MoS2 nanosheets as electrocatalysts for the hydrogen evolution reaction. J  Mater Chem A. 2018;6:138–144.
  • Chen X, McAteer D, McGuinness C, et al. RuII Photosensitizer‐Functionalized Two‐Dimensional MoS2 for Light‐Driven Hydrogen Evolution. Chem Eur J. 2018;24:351–355.
  • Yu Z, Pan Y, Shen Y, et al. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat Commun. 2014;5:5290.
  • Cho K, Min M, Kim T-Y, et al. Electrical and optical characterization of MoS2 with sulfur vacancy passivation by treatment with alkanethiol molecules. ACS Nano. 2015;9:8044–8053.
  • Lin Y, Williams TV, Cao W, et al. Defect functionalization of hexagonal boron nitride nanosheets. J Phys Chem C. 2010;114:17434–17439.
  • Sainsbury T, Satti A, May P, et al. Oxygen radical functionalization of boron nitride nanosheets. J Am Chem Soc. 2012;134:18758–18771.
  • Sainsbury T, Satti A, May P, et al. Covalently functionalized hexagonal boron nitride nanosheets by nitrene addition. Chem Eur J. 2012;18:10808–10812.
  • Kumar V, Joshi N, Dhara B, et al. Stable red emission from nanosheets of molecularly doped hexagonal boron nitride. J Phys Chem C. 2018;122:21076–21082.
  • Ryder CR, Wood JD, Wells SA, et al. Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat Chem. 2016;8:597.
  • van Druenen M, Davitt F, Collins T, et al. Covalent functionalization of few-layer black phosphorus using iodonium salts and comparison to diazonium modified black phosphorus. Chem Mater. 2018;30:4667–4674.