5,052
Views
7
CrossRef citations to date
0
Altmetric
Review Articles

Exoplanet interiors and habitability

, &
Article: 1630316 | Received 17 May 2018, Accepted 28 May 2019, Published online: 07 Jul 2019

References

  • Borucki WJ, Koch D, Basri G, et al. Kepler planet-detection mission: introduction and first results. Science. 2010 February;327:583.
  • Koch DG, Borucki WJ, Basri G, et al. Kepler mission design, realized photometric performance, and early science. Astrophys J Lett. 2010;713:L79–625.
  • Schneider J, Dedieu C, Le Sidaner P, et al. Defining and cataloging exoplanets: the exoplanet.eu database. Astron Astrophys. 2011;532:A79.
  • Burke CJ, Christiansen JL, Mullally F, et al. Terrestrial planet occurrence rates for the Kepler GK dwarf sample. Astrophys J. 2015 August;809:8.
  • Winn JN, Fabrycky DC. The occurrence and architecture of exoplanetary systems. Ann Rev Astron Astophys. 2015;53:409–447.
  • Udalski A, Paczyński B, Zebruń K, et al. The optical gravitational lensing experiment. Search for planetary and low-luminosity object transits in the galactic disk. Results of 2001 campaign. Acta Astronom. 2002;52:1–37.
  • Mayor M, Queloz D. A Jupiter-mass companion to a solar-type star. Nature. 1995;378:355–359.
  • Pepe F, Molaro P, Cristiani S, et al. Espresso: the next european exoplanet hunter. Astron Nachr. 2014;335:8–20.
  • Gillon M, Triaud AHMJ, Demory B-O, et al. Seven temperate terrestrial planets around the nearby ultracool dwarf star trappist-1. Nature. 2017;542:456.
  • Mocquet A, Grasset O, Sotin C. Very high-density planets: a possible remnant of gas giants. Philos Trans R Soc London Ser A. 2014;372: 20130164–20130164.
  • Buchhave LA, Bizzarro M, Latham DW, et al. Three regimes of extrasolar planet radius inferred from host star metallicities. Nature. 2014;509:593–595.
  • Rogers LA. Most 1.6 Earth-radius planets are not rocky. Astrophys J. 2015;801:41.
  • Fulton BJ, Petigura EA, Howard AW, et al. The california- kepler survey. iii. a gap in the radius distribution of small planets. Astron J. 2017;154:109.
  • Kaltenegger L. How to characterize habitable worlds and signs of life. Ann Rev Astron Astophys. 2017;55:433–485.
  • Andrews SM, Wilner DJ, Hughes AM, et al. Protoplanetary disk structures in ophiuchus. Astrophys J. 2009;700.
  • Cuzzi JN, Hogan RC, Paque JM, et al. Size-selective concentration of chondrules and other small particles in protoplanetary nebula turbulence. Astrophys J. 2001;546:496–508.
  • Youdin AN, Goodman J. Streaming instabilities in protoplanetary disks. Astrophys J. 2005;620:459–469.
  • Johansen A, Oishi JS, Mac Low -M-M, et al. Rapid planetesimal formation in turbulent circumstellar disks. Nature. 2007;448:1022–1025.
  • Birnstiel T, Fang M, Johansen A. Dust evolution and the formation of planetesimals. Space Sci Rev. 2016 December;205:41–75.
  • Dra̧Żkowska J, Alibert Y, Moore B. Close-in planetesimal formation by pile-up of drifting pebbles. A&A. 2016 October;594:A105.
  • Ida S, Guillot T. Formation of dust-rich planetesimals from sublimated pebbles inside of the snow line. A&A. 2016 November;596:L3.
  • Johansen A, Mac Low -M-M, Lacerda P, et al. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion. Sci Adv. 2015;1:1500109.
  • Johansen A, Lambrechts M. Forming planets via pebble accretion. Annu Rev Earth Planet Sci. 2017 August;45:359–387.
  • Morbidelli A, Raymond SN. Challenges in planet formation. J Geophys Res Planets. 2016 October;121:1962–1980.
  • Pollack JB, Hubickyj O, Bodenheimer P, et al. Formation of the Giant Planets by Concurrent Accretion of Solids and Gas. Icarus. 1996 November;124:62–85.
  • de Pater I, Lissauer JJ. Planetary sciences. Cambridge, UK: Cambridge University Press; 2001.
  • Valencia D, O’Connell RJ, Sasselov DD. Internal structure of massive terrestrial planets. Icarus. 2006;181:545–554.
  • Chambers JE, Wetherill GW. Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions. Icarus. 1998 December;136:304–327.
  • Morbidelli A, Lunine JI, O’Brien DP, et al. Building terrestrial planets. Annu Rev Earth Planet Sci. 2012 May;40:251–275.
  • Raymond SN, Quinn T, Lunine JI. Making other earths: dynamical simulations of terrestrial planet formation and water delivery. Icarus. 2004 March;168:1–17.
  • Schubert G, Spohn T, Reynolds RT. Thermal histories, compositions, and internal structures of the moons of the solar system. In: Burns JA, Matthews M, editors. Satellites. Tucson, Arizona, USA: University of Arizona Press; 1986. p. 224–292.
  • Canup RM. Simulations of a late lunar-forming impact. Icarus. 2004;168:433–456.
  • Neumann W, Breuer D, Spohn T. Differentiation of vesta: implications for a shallow magma ocean. Earth Planet Sci Lett. 2014;395:267–280.
  • Rubie DC, Nimmo F, Melosh HJ. Formation of the Earth’s core, chapter formation of the Earth’s core. 2nd ed. Oxford: Elsevier; 2015. p. 43–79.
  • Tobie G, Lunine JI, Monteux J, et al. The origin and evolution of titan. In: Ingo Mueller-Wodarg CA, Griffith EL, Editors Cravens TE, editors. Titan: interior, surface, atmosphere, and space environment. Cambridge Planetary Science, Cambridge, UK: Cambridge University Press; 2014. p. 29–62.
  • Wahl SM and Militzer B. High-temperature miscibility of iron and rock during terrestrial planet formation. Earth Planet Sci Lett. 2015 Jan;410:25–33.
  • Elkins-Tanton LT, Seager S. Coreless Terrestrial Exoplanets. Astrophys J. 2008 November;688:628–635.
  • Ricard Y. Mantle dynamics, volume 7 of treatise on geophysics, chapter physics of mantle convection. 1st ed. Elsevier; Amsterdam, Netherlands, 2007. p. 31–87.
  • Peale SJ, Cassen P, Reynolds RT. Melting of Io by tidal dissipation. Science. 1979 March;203:892–894.
  • Hussmann H, Choblet G, Lainey V, et al. Implications of rotation, orbital states, energy sources, and heat transport for internal processes in icy satellites. Space Sci Rev. 2010 June;153:317–348.
  • Guillot T, Showman AP. Evolution of “51 Pegasus b-like” planets. A&A. 2002 April;385:156–165.
  • Batygin K, Stevenson DJ. Inflating hot Jupiters with ohmic dissipation. Astrophys J Lett. 2010 May;714:L238–L243.
  • Kislyakova KG, Noack L, Johnstone CP, et al. Magma oceans and enhanced volcanism on trappist-1 planets due to induction heating. Nat Astron. 2017;1:878.
  • Stamenkovic V, Noack L, Breuer D, et al. The influence of pressure-dependent viscosity on the thermal evolution of super-Earths. Astrophys J. 2012;748:41–64.
  • Noack L, Rivoldini A, Van Hoolst. T. Volcanism and outgassing of stagnant-lid planets: implications for the habitable zone. Phys Earth Planet Inter. 2017;269:40–57.
  • Seager S, Kuchner M, Hier-Majumder CA, et al. Mass-radius relationships for solid exoplanets. Astrophys J. 2007 November;669:1279–1297.
  • Grasset O, Schneider J, Sotin C. A study of the accuracy of mass radius relationships for silicate-rich and ice-rich planets up to 100 earth masses. Astrophys J. 2009;693:722–733.
  • Wagner FW, Sohl F, Hussmann H, et al. Interior structure models of solid exoplanets using material laws in the infinite pressure limit. Icarus. 2011;214:366–376.
  • Noack L, Höning D, Rivoldini A, et al. Water-rich planets: how habitable is a water layer deeper than on earth? Icarus. 2016;277:215–236.
  • Hakim K, Rivoldini A, Van Hoolst T, et al. A new ab initio equation of state of hcp-Fe and its implication on the interior structure and mass-radius relations of rocky super-Earths. Icarus. 2018;313, 61-78.
  • Valencia D, Guillot T, Parmentier V, et al. Bulk composition of GJ 1214b and other sub-neptune exoplanets. Astrophys J. 2013 September;775:10.
  • Noack L, Snellen I, Rauer H. Water in extrasolar planets and implications for habitability. Space Sci Rev. 2017;212:877–898.
  • Barr AC, Dobos V, Kiss LL. Interior structures and tidal heating in the trappist-1 planets. A&A. 2018;613:A37.
  • Grimm S, Schneid BD. Magma generation on mars: amounts, rates, and comparisons with earth, moon, and venus. Science. 1991;254:996–998.
  • Dobos V, Barr AC, Kiss LL. Tidal heating and the habitability of the trappist-1 exoplanets. Astron Astrophys. 2019;624:A2.
  • Rauer H, Catala C, Aerts C, et al. The PLATO 2.0 mission. Exp Astron (2014) 38:249–330 doi:10.1007/s10686-014-9383-4.
  • Birch F. Elasticity and constitution of the Earth’s interior. J Geophys Res. 1952;57:227–286.
  • Elkins-Tanton LT, Seager S. Ranges of atmospheric mass and composition of super-Earth exoplanets. Astrophys J. 2008;685:1237–1246.
  • Rivoldini A, Van Hoolst T, Verhoeven O, et al. Geodesy constraints on the interior structure and composition of Mars. Icarus. 2011;213:451–472.
  • Hauck SA, Margot J-L, Solomon SC, et al. The curious case of Mercury’s internal structure. J Geophys Res Planets. 2013 June;118:1204–1220.
  • Rivoldini A, Van Hoolst T. The interior structure of Mercury constrained by the low-degree gravity field and the rotation of Mercury. Earth Planet Sci Lett. 2013 September;377:62–72.
  • Benz W, Anic A, Horner J, et al. The Origin of Mercury. Space Sci Rev. 2007 October;132:189–202.
  • Asphaug E, Reufer A. Mercury and other iron-rich planetary bodies as relics of inefficient accretion. Nat Geosci. 2014 August;7:564–568.
  • Nittler LR, Starr RD, Weider SZ, et al. The major-element composition of mercury’s surface from MESSENGER X-ray spectrometry. Science. 2011 September;333:1847.
  • Hirose K, Labrosse S, Hernlund J. Composition and State of the Core. Annu Rev Earth Planet Sci. 2013 Jul 26;41:657–691.
  • Cottenier S, Probert MIJ, Van Hoolst T, et al. Crystal structure prediction for iron as inner core material in heavy terrestrial planets. Earth Planet Sci Lett. 2011;312:237–242.
  • Mikhaylushkin AS, Simak SI, Dubrovinsky L, et al. Pure iron compressed and heated to extreme conditions. Phys Rev Lett. 2007 Oct;99:165505.
  • Belonoshko AB, Lukinov T, Fu J, et al. Stabilization of body-centred cubic iron under inner-core conditions. Nat Geosci. 2017 Feb. advance online publication:.
  • Ishikawa T, Tsuchiya T, Tsuchiya J. Stacking-disordered phase of iron in the Earth’s inner core from first principles. Phys Rev B. 2011 Jun;83:212101.
  • Pickard CJ, Needs RJ. Fast track communication: stable phases of iron at terapascal pressures. J Phys Condens Matter. 2009 November;21:452205.
  • Anzellini S, Dewaele A, Mezouar M, et al. Melting of iron at Earth’s inner core boundary based on fast X-ray diffraction. Science. 2013;340:464–466.
  • Poirier J-P. Light elements in the Earth’s outer core: A critical review. Phys Earth Planet Inter. 1994 September;85:319–337.
  • Badro J, Siebert J, Nimmo F. An early geodynamo driven by exsolution of mantle components from Earth’s core. Nature. 2016 Aug;536:326–328.
  • Alfè D, Gillan MJ, Price GD. Ab initio chemical potentials of solid and liquid solutions and the chemistry of the Earth’s core. J Chem Phys. 2002 April;116:7127–7136.
  • Davies CJ, Pozzo M, Gubbins D, et al. Constraints from material properties on the dynamics and evolution of Earth’s core. Nat Geosci. 2015 Aug.
  • Morard G, Bouchet J, Valencia D, et al. The melting curve of iron at extreme pressures: implications for planetary cores. High Energ Dens Phys. 2011 September;7:141–144.
  • Nimmo F. Core dynamics, volume 8 of treatise on geophysics, chapter energetics of the core. 2nd ed. Elsevier; Amsterdam,  Netherlands, 2015. 27–55.
  • O’Rourke JG, Stevenson DJ. Powering Earth’s dynamo with magnesium precipitation from the core. Nature. 2016 Jan;529:387–389.
  • Hirose K, Morard G, Sinmyo R, et al. Crystallization of silicon dioxide and compositional evolution of the Earth’s core. Nature. 2017 Mar;543:99–102.
  • Gomi H, Hirose K. Electrical resistivity and thermal conductivity of hcp Fe–ni alloys under high pressure: implications for thermal convection in the Earth’s core. Phys Earth Planet Inter. 2015 Oct;247:2–10.
  • Zuzana Konôpková R, McWilliams S, Gómez-Pérez N, et al. Direct measurement of thermal conductivity in solid iron at planetary core conditions. Nature. 2016 Jun;534:99–101.
  • Pozzo M, Davies C, Gubbins D, et al. Thermal and electrical conductivity of iron at Earth’s core conditions. Nature. 2012 May;485:355–358.
  • de Koker N, Steinle-Neumann G, Vojtěch V. Electrical resistivity and thermal conductivity of liquid Fe alloys at high P and T, and heat flux in Earth’s core. Proc Nat Acad Sci. 2012;109:4070–4073.
  • Pourovskii LV, Mravlje J, Georges A, et al. and I A Abrikosov. Electron–electron scattering and thermal conductivity of epsilon-iron at Earth’s core conditions. New J Phys. 2017;19:073022.
  • Davies CJ. Cooling history of earth’s core with high thermal conductivity. Phys Earth Planet Inter. 2015;247:65–79.
  • Stixrude L, Lithgow-Bertelloni C. Thermodynamics of mantle minerals II. Phase equilibria. Geophys J Int. 2011;184:1180–1213.
  • Dorn C, Khan A, Heng K, et al. Can we constrain the interior structure of rocky exoplanets from mass and radius measurements? Astron Astrophys. 2015;577:A83.
  • Santos NC, Adibekyan V, Mordasini C, et al. Constraining planet structure from stellar chemistry: the cases of corot-7, kepler-10, and kepler-93. Astron Astrophys. 2015;580:L13.
  • Santos NC, Adibekyan V, Dorn C, et al. Constraining planet structure and composition from stellar chemistry: trends in different stellar populations. A&A. 2017;608:A94.
  • Guenther EW, Barragán O, Dai F, et al. K2-106, a system containing a metal-rich planet and a planet of lower density. Astron Astrophys. 2017;608.
  • Santerne A, Brugger B, Armstrong DJ, et al. An Earth-sized exoplanet with a Mercury-like composition. Nat Astron. 2018.
  • Bond JC, O’Brien DP, Lauretta DS. The compositional diversity of extrasolar terrestrial planets. I. In situ simulations. Apj. 2010 June;715:1050–1070.
  • Moriarty J, Madhusudhan N, Fischer D. Chemistry in an evolving protoplanetary disk: effects on terrestrial planet composition. Astrophys J. 2014 May;787:81.
  • Murakami M, Hirose K, Kawamura K, et al. Post-perovskite phase transition in MgSiO3. Science. 2004;304:855–858.
  • Umemoto K, Wentzcovitch RM, Wu S, et al. Phase transitions in MgSiO3 post-perovskite in super-Earth mantles. Earth Planet Sci Lett. 2017 Nov;478:40–45.
  • Chust TC, Steinle-Neumann G, Dolejs D, et al. Mma-eos: A computational framework for mineralogical thermodynamics. J Geophys Res. 2018;122:9881–9920.
  • Dunaeva AN, Antsyshkin DV, Kuskov OL. Phase diagram of H2O: thermodynamic functions of the phase transitions of high-pressure ices. Solar System Res. 2010 Jun;44:202–222.
  • Tackley PJ, Ammann M, Brodholt JP, et al. Mantle dynamics in super-Earths: post-perovskite rheology and self-regulation of viscosity. Icarus. 2013;225:50–61.
  • Stamenkovic V, Breuer D, Spohn T. Thermal and transport properties of mantle rock at high pressure: applications to super-Earths. Icarus. 2011;216:572–596.
  • Lobanov SS, Holtgrewe N, Lin J-F, et al. Radiative conductivity and abundance of post-perovskite in the lowermost mantle. Epsl. 2017;479:43–49.
  • Hirth G, Kohlstedt D. Rheology of the upper mantle and the mantle wedge: A view from the experimentalists. Inside the subduction Factory; 2003:83–105.
  • Katz, R. F., M. Spiegelman, and C. H. Langmuir, A new parameterization of hydrous mantle melting, Geochem. Geophys. Geosyst., 2003;4(9), 1073, doi:10.1029/2002GC000433.
  • Jing Z, Karato S-I. The density of volatile bearing melts in the earth’s deep mantle: the role of chemical composition. Chem Geol. 2009;262:100–107.
  • Bajgain S, Ghosh DB, Karki BB. Structure and density of basaltic melts at mantle conditions from first-principles simulations. Nat Commun. 2012;6:8578(7pp).
  • Dorn C, Noack L, Rozel A. Outgassing on stagnant-lid super-earths. Astron Astrophys. 2018;614.
  • Zhao Y-H, Zimmerman ME, Kohlstedt DL. Effect of iron content on the creep behavior of olivine: 1. anhydrous conditions. Earth Planet Sci Lett. 2009;287:229–240.
  • Zhao Y-H, Zimmerman ME, Kohlstedt DL. Effect of iron content on the creep behavior of Olivine: 2. Hydrous conditions. Phys Earth Planet Inter. 2018;278:26–33.
  • Duffy T, Madhusudhan N, Lee KKM., volume 7 of treatise on geophysics, chapter Mineralogy of Super-Earth planets. 2nd ed. Elsevier, Amsterdam, Netherlands; 2015. p. 149-178.
  • Sokolov PS, Mukhanov VA, Chauveau T, et al. On melting of silicon carbide under pressure. J Superhard Mater. 2012;34:339–341.
  • Madhusudhan N, Lee KKM, Mousis O. A possible carbon-rich interior in super-earth 55 cancri e. Astrophys J Lett. 2012;759:L40.
  • Christensen UR. Effects of phase transitions on mantle convection. Annu Rev Earth Planet Sci. 1995;23:65–87.
  • Machetel P, Weber P. Intermittent layered convection in a model mantle with an endothermic phase change at 670 km. Nature. 1991;350:55–57.
  • Davaille A, Smrekar SE, Tomlinson S. Experimental and observational evidence for plume-induced subduction on venus. Nat Geosci. 2017;10:349–355.
  • Schubert G, Turcotte DL, Olson P. Mantle convection in the Earth and planets. Cambridge, UK: Cambridge University Press; 2001.
  • van Hunen J, van Den Berg AP. Plate tectonics on the early earth: limitations imposed by strength and buoyancy of subducted lithosphere. Lithos. 2008;103:217–235.
  • Fischer R, Gerya T. Regimes of subduction and lithospheric dynamics in the precambrian: 3d thermomechanical modelling. Gondwana Res. 2016;37:53–70.
  • Sleep NH, Windley BF. Archean plate tectonics: constraints and inferences. J Geol. 1982;90:363–379.
  • Noack L, Breuer D, Spohn T. Coupling the atmosphere with interior dynamics: implications for the resurfacing of Venus. Icarus. 2012;217:484–498.
  • Demory B-O, Gillon M, de Wit J, et al. A map of the large day–night temperature gradient of a super-earth exoplanet. Nature. 2016;532:207.
  • Noack L, Breuer D. Plate tectonics on rocky exoplanets: influence of initial conditions and mantle rheology. Planet Space Sci. 2014;98:41–49.
  • Sandu C, Lenardic A, O’Neill CJ, et al. Earth’s evolving stress state and the past, present, and future stability of cratonic lithosphere. Int Geol Rev. 2006;53:1392–1402.
  • O’Neill C, Lenardic A. Geological consequences of super-sized Earths. Grl. 2007;34:L19204.
  • Stein C, Schmalzl J, Hansen U. The effect of rheological parameters on plate behaviour in a self-consistent model of mantle convection. Phys Earth Planet Inter. 2004;142:225–255.
  • Valencia D, O’Connell RJ, Sasselov DD. Inevitability of plate tectonics on super-Earths. Astrophys J. 2007;670:L45–L48.
  • Stein C, Lowman JP, Hansen U. The influence of mantle internal heating on lithospheric mobility: implications for super-earths. Earth Planet Sci Lett. 2013;361:448–459.
  • Korenaga J. On the likelihood of plate tectonics on super-earths: does size matter? Astrophys J Lett. 2010;725:L43–L46.
  • Foley BJ, Bercovici D, Landuyt W. The conditions for plate tectonics on super-earths: inferences from convection models with damage. Earth Planet Sci Lett. 2012;331–332:281–290.
  • van Heck HJ, Tackley PJ. Plate tectonics on super-earths: equally or more likely than on earth. Epsl. 2011;310:252–261.
  • Stamenkovic V, Breuer D. The tectonic mode of rocky planets: part 1. Driving factors, models and parameters. Icarus. 2014;234:174–193.
  • Karato S-I. Rheological structure of the mantle of a super-earth: some insights from mineral physics. Icarus. 2011;212:14–23.
  • Stein C, Finnenkötter A, Lowman JP, et al. The pressure-weakening effect in super-earths: consequences of a decrease in lower mantle viscosity on surface dynamics. Grl. 2011;38:L21201.
  • Tachinami C, Ogawa M, Kameyama M. Thermal convection of compressible fluid in the mantle of super-Earths. Icarus. 2014;231:377–384.
  • Van Den Berg AP, Yuen DA, Beebe GL, et al. The dynamical impact of electronic thermal conductivity on deep mantle convection of exosolar planets. Phys Earth Planet Inter. 2010;178:36–154.
  • Wagner FW, Tosi N, Sohl F, et al. Rocky super-Earth interiors structure and internal dynamics of CoRoT-7b and Kepler-10b. A&A. 2012;541:A103.
  • Stamenković V, Noack L, Breuer D, et al. The influence of pressure-dependent viscosity on the thermal evolution of super-earths. Astrophys J. 2012 March;748:41.
  • Kameyama M, Yamamoto M. Numerical experiments on thermal convection of highly compressible fluids with variable viscosity and thermal conductivity: implications for mantle convection of super-Earths. Phys Earth Planet Inter. 2018;274:23–36.
  • Van Den Berg AP, Yuen DA, Umemoto K, et al. Mass-dependent dynamics of terrestrial exoplanets using ab initio mineral properties. Icarus. 2019;317:412–426.
  • Elkins-Tanton LT. Linked magma ocean solidification and atmospheric growth for Earth and Mars. Epsl. 2008;271:181–191.
  • Zahnle KJ, Kasting JF, Pollack JB. Evolution of a steam atmosphere during earth’s accretion. Icarus. 1988;74:62–97.
  • Hier-Majumder S, Hirschmann MM. The origin of volatiles in the earth’s mantle. Geochem Geophys Geosyst. 2017.
  • Nikolaou A, Katyal N, Tosi N, et al. What factors affect the duration and outgassing of the terrestrial magma ocean? Astrophys J. page in press, 2019.
  • Iacono-Marziano G, Morizet Y, Le Trong E, et al. New experimental data and semi-empirical parameterization of h2o?co2 solubility in mafic melts. Geochim Cosmochim Acta. 2013;97:145–157.
  • O’Neill HSC, Mavrogenes J. The sulfide saturation capacity and the sulfur content at sulfide saturation of silicate melts at 1400 degree C and 1 bar. J Petrol. 2002;43:1049–1087.
  • Gaillard F, Scaillet B. A theoretical framework for volcanic degassing chemistry in a comparative planetology perspective and implications for planetary atmospheres. Earth Planet Sci Lett. 2014;403:307–316.
  • Schaefer L, Fegley B. Chemistry of atmospheres formed during accretion of the Earth and other terrestrial planets. Icarus. 2010;208:438–448.
  • Hirschmann MM, Withers AC. Ventilation of co2 from a reduced mantle and consequences for the early martian greenhouse. Earth Planet Sci Lett. 2008;270:147–155.
  • O’Neill, C., A. Lenardic, A. M. Jellinek, and W. S. Kiefer (2007), Melt propagation and volcanism in mantle convection simulations, with applications for Martian volcanic and atmospheric evolution, J. Geophys. Res., 112, E07003, doi:10.1029/2006JE002799.
  • Ohtani E, Nagata Y, Suzuki A, et al. Melting relations of peridotite and the density crossover in planetary mantles. Chem Geol. 1995;120:207–221.
  • L. Noack, M. Godolt, P. von Paris, A.-C. Plesa, B. Stracke, D. Breuer, H. Rauer. Can the interior structure influence the habitability of a rocky planet? Planet. Space Sci. 2014:98:14-29.
  • Dasgupta R, Hirschmann MM. The deep carbon cycle and melting in earth’s interior. Earth Planet Sci Lett. 2010;298:1–13.
  • Parai R, Mukhopadhyay S. How large is the subducted water flux? new constraints on mantle regassing rates. Earth Planet Sci Lett. 2012;317:396–406.
  • Höning D, Hansen-Goos H, Airo A, et al. Biotic vs. abiotic earth: A model for mantle hydration and continental coverage. Planet Space Sci. 2014;98:5–13.
  • Cockell CS, Bush T, Bryce C, et al. Habitability: a review. Astrobiology. 2016;16:89–117.
  • Lammer H, Bredehöft JH, Coustenis A, et al. What makes a planet habitable? A&A. 2009;17:181–249.
  • Grasset O, Dougherty MK, Coustenis A, et al. JUpiter ICy moons Explorer (JUICE): an ESA mission to orbit Ganymede and to characterise the Jupiter system. Planet Space Sci. 2013 April;78:1–21.
  • Alibert Y. On the radius of habitable planets. Astron Astrophys. 2014;561:A41.
  • Kereszturi A, Noack L. Review on the role of planetary factors on habitability. Origins Life Evol Biosphere. 2016;46:473–486.
  • Hart MH. Habitable zones about main sequence stars. Icarus. 1979 January;37:351–357.
  • Kasting JF, Whitmire DP, Reynolds RT. Habitable zones around main sequence stars. Icarus. 1993 January;101:108–128.
  • Lyons TW, Reinhard CT, Planavsky NJ. The rise of oxygen in earth’s early ocean and atmosphere. Nature. 2014;1506:307–315.
  • Kasting JF. Runaway and moist greenhouse atmospheres and the evolution of earth and venus. Icarus. 1988;74:472–494.
  • Seager S. Exoplanet habitability. Science. 2013;340:577–581.
  • Pierrehumbert R, Gaidos E. Hydrogen greenhouse planets beyond the habitable zone. Astrophys J Lett. 2011;734:L13:(5pp).
  • Anglada-Escudé G, Amado PJ, Barnes J, et al. A terrestrial planet candidate in a temperate orbit around proxima centauri. Nature. 2016;536:437–440.
  • Airapetian VS, Glocer A, Khazanov GV, et al. How hospitable are space weather affected habitable zones? The role of ion escape. Astrophys J Lett. 2017;836:L3.
  • Hut P. Stability of tidal equilibrium. A&A. 1980 December;92:167–170.
  • Makarov VV, Berghea C, Efroimsky M, et al. Spin-orbit resonances of potentially habitable exoplanets: the case of GJ 581d. Astrophys J. 2012 December;761:83.
  • Carone L, Keppens R, Decin L. Connecting the dots–iii. Nightside cooling and surface friction affect climates of tidally locked terrestrial planets. Mon Not R Astron Soc. 2016;461:1981–2002.
  • Wordsworth R. Atmospheric heat redistribution and collapse on tidally locked rocky planets. Astrophys J. 2015;806:180.
  • Bouchet J, Mazevet S, Morard G, et al. Ab initio equation of state of iron up to 1500 GPa. Phys Rev B. 2013;87:(194102).
  • Smith RF, Fratanduono DE, Braun DG, et al. Equation of state of iron under core conditions of large rocky exoplanets. Nat Astron. 2018:2, 452–458.
  • Wicks JK, Smith RF, Fratanduono DE, et al.Crystal structure and equation of state of fe-si alloys at super-earth core conditions. Sci Adv. 2018;4, eaao5864.
  • Stagno V, Ojwang DO, McCammon CA, et al. The oxidation state of the mantle and the extraction of carbon from Earth’s interior. Nature. 2013;493:84–88.
  • Vander Kaaden KE, McCubbin FM. Exotic crust formation on Mercury: consequences of a shallow, FeO-poor mantle. J Geophys Res Planets. 2015 February;120:195–209.
  • Collinet M, Médard E, Charlier B, et al. Melting of the primitive martian mantle at 0.5-2.2 GPa and the origin of basalts and alkaline rocks on Mars. Earth Planet Sci Lett. 2015 October;427:83–94.
  • Schaefer L, Fegley B. Chemistry of silicate atmospheres of evaporating super-earths. Astrophys J Lett. 2009 October;703:L113–L117.
  • Léger A, Grasset O, Fegley B, et al. The extreme physical properties of the CoRoT-7b super-Earth. Icarus. 2011 May;213:1–11.
  • Forget F, Leconte J. Possible climates on terrestrial exoplanets. Philos Trans R Soc A. 2014 March;372: 20130084–20130084.
  • Tinetti G. Ariel assessment study report. ESA/SCI(2017)2.
  • Snellen IAG, Brandl BR, de Kok RJ, et al. Fast spin of the young extrasolar planet β Pictoris b. Nature. 2014 May;509:63–65.
  • Kellermann C, Becker A, Redmer R. Interior structure models and fluid love numbers of exoplanets in the super-earth regime. A&A. 2018;615:A39.