4,820
Views
29
CrossRef citations to date
0
Altmetric
Review Articles

Engineered electronic states in atomically precise artificial lattices and graphene nanoribbons

ORCID Icon & ORCID Icon
Article: 1651672 | Received 08 May 2019, Accepted 29 Jul 2019, Published online: 17 Oct 2019

References

  • Eigler DM, Schweizer EK. Positioning single atoms with a scanning tunneling microscope. Nature. 1990;344:904–932.
  • Eigler D, Lutz C, Rudge W. An atomic switch realized with the scanning tunnelling microscope. Nature. 1991;352:600–603.
  • Stroscio JA, Eigler DM. Atomic and molecular manipulation with the scanning tunneling microscope. Science. 1991;254:1319–1326.
  • Ternes M, Lutz CP, Hirjibehedin CF, et al. The force needed to move an atom on a surface. Science. 2008;319:1066–1069.
  • Chen CJ. Introduction to scanning tunneling microscopy. Oxford University Press, Oxford; 2007.
  • Ervasti MM, Schulz F, Liljeroth P, et al. Single- and many-particle description of scanning tunneling spectroscopy. J Electron Spectrosc Related Phenom. 2017;219:63–71.
  • Crommie MF, Lutz CP, Eigler DM. Imaging standing waves in a two-dimensional electron gas. Nature. 1993;363:524–527.
  • Manoharan HC, Lutz CP, Eigler DM. Quantum mirages formed by coherent projection of electronic structure. Nature. 2000;403:512–515.
  • Moon CR, Mattos LS, Foster BK, et al. Quantum holographic encoding in a two-dimensional electron gas. Nat Nanotechnol. 2009;4:167–172.
  • Heinrich AJ, Lutz CP, Gupta JA, et al. Molecule cascades. Science. 2002;298:1381–1387.
  • Gomes KK, Mar W, Ko W, et al. Designer Dirac fermions and topological phases in molecular graphene. Nature. 2012;483:306–310.
  • Jesse S, Borisevich AY, Fowlkes JD, et al. Directing matter: toward atomic-scale 3D nanofabrication. ACS Nano. 2016;10:5600–5618.
  • Dyck O, Kim S, Kalinin SV, et al. Placing single atoms in graphene with a scanning transmission electron microscope. Appl Phys Lett. 2017;111:113104.
  • Susi T, Meyer JC, Kotakoski J. Manipulating low-dimensional materials down to the level of single atoms with electron irradiation. Ultramicroscopy. 2017;180:163–172.
  • Susi T, Kepaptsoglou D, Lin Y-C, et al. Towards atomically precise manipulation of 2D nanostructures in the electron microscope. 2D Mater. 2017;4:042004.
  • Zhao X, Dan J, Chen J, et al. Atom-by- atom fabrication of monolayer molybdenum membranes. Adv Mater. 2018;30:1707281.
  • Hudak BM, Song J, Sims H, et al. Directed atom-by-atom assembly of dopants in silicon. ACS Nano. 2018;12:5873–5879.
  • Tripathi M, Mittelberger A, Pike NA, et al. Electron-beam manipulation of silicon dopants in graphene. Nano Lett. 2018;18:5319–5323.
  • Su C, Tripathi M, Yan Q-B, et al. Engineering single-atom dynamics with electron irradiation. Sci Adv. 2019;5:eaav2252.
  • Mustonen K, Markevich A, Tripathi M, et al. Electron-beam manipulation of silicon impurities in single-walled carbon nanotubes. Adv Funct Mater. 2019;1901327.
  • Dyck O, Ziatdinov M, Lingerfelt DB, et al. Atom-by-atom fabrication with electron beams. Nat Rev Mater. 2019;4:497-501.
  • Barth JV. Molecular architectonic on metal surfaces. Annu Rev Phys Chem. 2007;58:375–407.
  • Lobo-Checa J, Matena M, Muller K, et al. Band formation from coupled quantum dots formed by a nanoporous network on a copper surface. Science. 2009;325:300–303.
  • Dong L, Gao Z, Lin N. Self-assembly of metal–organic coordination structures on surfaces. Prog Surf Sci. 2016;91:101–135.
  • Cai J, Ruffieux P, Jaafar R, et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature. 2010;466:470–473.
  • Ruffieux P, Wang S, Yang B, et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature. 2016;531:489–492.
  • Talirz L, Ruffieux P, Fasel R. On-surface synthesis of atomically precise graphene nanoribbons. Adv Mater. 2016;28:6222–6231.
  • van der Lit J, Boneschanscher MP, Vanmaekelbergh D, et al. Suppression of electron–vibron coupling in graphene nanoribbons contacted via a single atom. Nat Commun. 2013;4:2023.
  • Chen Y-C, de Oteyza DG, Pedramrazi Z, et al. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. ACS Nano. 2013;7:6123–6128.
  • Cai J, Pignedoli CA, Talirz L, et al. Graphene nanoribbon heterojunctions. Nat Nanotechnol. 2014;9:896–900.
  • Chen Y-C, Cao T, Chen C, et al. Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions. Nat Nanotechnol. 2015;10:156–160.
  • Kimouche A, Ervasti MM, Drost R, et al. Ultra-narrow metallic armchair graphene nanoribbons. Nat Commun. 2015;6:10177.
  • Castro Neto A, Guinea F, Peres N, et al. The electronic properties of graphene. Rev Mod Phys. 2009;81:109–162.
  • Hoffmann R. Solids and surfaces: a Chemist’s view of bonding in extended structures.  Wiley-VCH Publishers, Inc: New York; 1989.
  • Thomas S, Li H, Zhong C, et al. Electronic structure of two-dimensional π-conjugated covalent organic frameworks. Chem Mater. 2019;31:3051–3065.
  • Mielke A. Ferromagnetism in single-band hubbard models with a partially flat band. Phys Rev Lett. 1999;82:4312–4315.
  • Lieb EH. Two theorems on the Hubbard model. Phys Rev Lett. 1989;62:1201–1204.
  • Peotta S, Törmä P. Superfluidity in topologically nontrivial flat bands. Nat Commun. 2015;6:8944.
  • Löthman T, Black-Schaffer AM. Universal phase diagrams with superconducting domes for electronic flat bands. Phys Rev B. 2017;96:064505.
  • Leykam D, Andreanov A, Flach S. Artificial flat band systems: from lattice models to experiments. Adv Phys X. 2018;3:1473052.
  • Hla SW. Atom-by-atom assembly. Rep Prog Phys. 2014;77:056502.
  • Hasegawa Y, Avouris P. Direct observation of standing wave formation at surface steps using scanning tunneling spectroscopy. Phys Rev Lett. 1993;71:1071–1074.
  • Bürgi L, Jeandupeux O, Hirstein A, et al. Confinement of surface state electrons in Fabry-Pérot resonators. Phys Rev Lett. 1998;81:5370–5373.
  • Negulyaev NN, Stepanyuk VS, Niebergall L, et al. Direct evidence for the effect of quantum confinement of surface-state electrons on atomic diffusion. Phys Rev Lett. 2008;101:226601.
  • Crommie M, Lutz C, Eigler D. Confinement of electrons to quantum corrals on a metal surface. Science. 1993;262:218–220.
  • Heller EJ, Crommie MF, Lutz CP, et al. Scattering and absorption of surface electron waves in quantum corrals. Nature. 1994;369:464–466.
  • Polini M, Guinea F, Lewenstein M, et al. Artificial honeycomb lattices for electrons, atoms and photons. Nat Nanotechnol. 2013;8:625–633.
  • Yu S-Y, Sun X-C, Ni X, et al. Surface phononic graphene. Nat Mater. 2016;15:1243–1247.
  • Park C-H, Louie SG. Making massless Dirac fermions from a patterned two- dimensional electron gas. Nano Lett. 1793–1797;9:2009.
  • Lee C, Wei X, Kysar JW, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321:385–388.
  • Wang S, Tan LZ, Wang W, et al. Manipulation and characterization of aperiodical graphene structures created in a two-dimensional electron gas. Phys Rev Lett. 2014;113:196803.
  • Slot MR, Gardenier TS, Jacobse PH, et al. Experimental realization and characterization of an electronic Lieb lattice. Nat Phys. 2017;13:672–676.
  • Kempkes SN, Slot MR, Freeney SE, et al. Design and characterization of electrons in a fractal geometry. Nat Phys. 2019;15:127–131.
  • Collins LC, Witte TG, Silverman R, et al. Imaging quasiperiodic electronic states in a synthetic Penrose tiling. Nat Commun. 2017;8:15961.
  • Yan L, Hua M, Zhang Q, et al. Symmetry breaking in molecular artificial graphene. New J Phys. 2019;21:083005.
  • Kempkes SN, Slot MR, van Den Broeke JJ, et al. Robust zero-energy modes in an electronic higher-order topological insulator: the dimerized Kagome lattice. Nature Materials. 1–6. https://doi.org/10.1038/s41563-019-0483-4. 2019.
  • Freeney SE, van Den Broeke JJ, van der Veen AJJH, et al. Edge-dependent topology in Kekulé lattices. arXiv:1906.09051. 2019.
  • Gao J-H, Zhou Y, Zhang F-C. Superconductivity in a molecular graphene. arXiv:1412.0337. 2014.
  • Paavilainen S, Ropo M, Nieminen J, et al. Coexisting Honeycomb and Kagome characteristics in the electronic band structure of molecular graphene. Nano Lett. 2016;16:3519–3523.
  • Li S, Qiu W-X, Gao J-H. Designing artificial two dimensional electron lattice on metal surface: a Kagome-like lattice as an example. Nanoscale. 2016;8:12747–12754.
  • Qiu WX, Li S, Gao JH, et al. Designing an artificial Lieb lattice on a metal surface. Phys Rev B. 2016;94:241409.
  • Allan MP, Fischer MH, Ostojic O, et al. Creating better superconductors by periodic nanopatterning. SciPost Phys. 2017;3.
  • Ma L, Qiu W-X, Lü J-T, et al. Orbital degrees of freedom in artificial electron lattices on a metal surface. Phys Rev B. 2019;99:205403.
  • Qiu W-X, Ma L, Lü J-T, et al. Making artificial px,y-orbital honeycomb electron lattice on metal surface. arXiv:1901.01008. 2019.
  • Drost R, Ojanen T, Harju A, et al. Topological states in engineered atomic lattices. Nat Phys. 2017;13:668–671.
  • Slot M, Kempkes S, Knol E, et al. p-Band Engineering in Artificial Electronic Lattices. Phys Rev X. 2019;9:011009.
  • Wallis TM, Nilius N, Ho W. Electronic density oscillations in gold atomic chains assembled atom by atom. Phys Rev Lett. 2002;89:236802.
  • Nilius N, Wallis TM, Ho W. Localized molecular constraint on electron delocalization in a metallic chain. Phys Rev Lett. 2003;90:186102.
  • Fölsch S, Hyldgaard P, Koch R, et al. Quantum confinement in monatomic Cu chains on Cu(111). Phys Rev Lett. 2004;92:056803.
  • Lagoute J, Liu X, Fölsch S. Link between adatom resonances and the Cu(111) Shockley surface state. Phys Rev Lett. 2005;95:136801.
  • Lagoute J, Nacci C, Fölsch S. Doping of monatomic Cu chains with single Co atoms. Phys Rev Lett. 2007;98:146804.
  • Oncel N. Atomic chains on surfaces. J Phys Condens Matter. 2008;20:393001.
  • Fölsch S, Martínez-Blanco J, Yang J, et al. Quantum dots with single-atom precision. Nat Nanotechnol. 2014;9:505–508.
  • Yang J, Erwin SC, Kanisawa K, et al. Emergent multistability in assembled nanostructures. Nano Lett. 2011;11:2486–2489.
  • Pan Y, Yang J, Erwin SC, et al. Reconfigurable quantum-dot molecules created by atom manipulation. Phys Rev Lett. 2015;115:076803.
  • Schofield SR, Studer P, Hirjibehedin CF, et al. Quantum engineering at the silicon surface using dangling bonds. Nat Commun. 2013;4:1649.
  • Huff TR, Labidi H, Rashidi M, et al. Atomic white-out: enabling atomic circuitry through mechanically induced bonding of single hydrogen atoms to a silicon surface. ACS Nano. 2017;11:8636–8642.
  • Wyrick J, Wang X, Namboodiri P, et al. Atom- by-atom construction of a cyclic artificial molecule in Silicon. Nano Lett. 2018;18:7502–7508.
  • Huff T, Labidi H, Rashidi M, et al. Binary atomic silicon logic. Nat Electron. 2018;1:636–643.
  • Achal R, Rashidi M, Croshaw J, et al. Lithography for robust and editable atomic-scale silicon devices and memories. Nat Commun. 2018;9:2778.
  • Schuler B, Persson M, Paavilainen S, et al. Effect of electron-phonon interaction on the formation of one-dimensional electronic states in coupled Cl vacancies. Phys Rev B. 2015;91:235443.
  • Repp J, Meyer G, Paavilainen S, et al. Scanning tunneling spectroscopy of Cl vacancies in NaCl films: strong electron-phonon coupling in double-barrier tunneling junctions. Phys Rev Lett. 2005;95:225503.
  • Kalff FE, Rebergen MP, Fahrenfort E, et al. “A kilobyte rewritable atomic memory. Nat Nanotechnol. 2016;11:926–929.
  • Girovsky J, Lado JL, Kalff FE, et al. Emergence of quasiparticle Bloch states in artificial crystals crafted atom- by-atom. SciPost Phys. 2017;2:20.
  • Heeger AJ, Kivelson S, Schrieffer JR, et al. Solitons in conducting polymers. Rev Mod Phys. 1988;60:781–850.
  • Rizzo DJ, Veber G, Cao T, et al. Topological band engineering of graphene nanoribbons. Nature. 2018;560:204–208.
  • Gröning O, Wang S, Yao X, et al. Engineering of robust topological quantum phases in graphene nanoribbons. Nature. 2018;560:209–213.
  • Cheon S, Kim T-H, Lee S-H, et al. Chiral solitons in a coupled double peierls chain. Science. 2015;350:182–185.
  • Kim T-H, Cheon S, Yeom HW. Switching chiral solitons for algebraic operation of topological quaternary digits. Nat Phys. 2017;13:444–447.
  • Huda N, Kezilebieke S, Ojanen T, et al. Tunable topological domain wall states in engineered atomic chains. arXiv:1806.08614. 2018.
  • Martinez Alvarez VM, Coutinho-Filho MD. Edge states in trimer lattices. Phys Rev A. 2019;99:013833.
  • Asbóth JK, Oroszlány L, Pályi A. A Short Course on Topological Insulators, Lecture Notes in Physics, Vol. 919. Springer International Publishing: Cham; 2016.
  • Han MY, Özyilmaz B, Zhang Y, et al. Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett. 2007;98:206805.
  • Tapasztó L, Dobrik G, Lambin P, et al. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat Nanotechnol. 2008;3:397–401.
  • Bai J, Duan X, Huang Y. Rational fabrication of graphene nanoribbons using a nanowire etch mask. Nano Lett. 2009;9:2083–2087.
  • Kosynkin DV, Higginbotham AL, Sinitskii A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature. 2009;458:872–876.
  • Tao C, Jiao L, Yazyev OV, et al. Spatially resolving edge states of chiral graphene nanoribbons. Nat Phys. 2011;7:616–620.
  • Gunlycke D, Areshkin DA, White CT. Semiconducting graphene nanostrips with edge disorder. Appl Phys Lett. 2007;90:142104.
  • Huang B, Liu F, Wu J, et al. Suppression of spin polarization in graphene nanoribbons by edge defects and impurities. Phys Rev B. 2008;77:153411.
  • Stampfer C, Güttinger J, Hellmüller S, et al. Energy gaps in etched graphene nanoribbons. Phys Rev Lett. 2009;102:056403.
  • Grill L, Dyer M, Lafferentz L, et al. Nano-architectures by covalent assembly of molecular building blocks. Nat Nanotechnol. 2007;2:687–691.
  • Ullmann F, Bielecki J. Ueber Synthesen in der Biphenylreihe. Ber Dtsch Chem Ges. 1901;34:2174–2185.
  • Durr RA, Haberer D, Lee Y-L, et al. Orbitally matched edge-doping in graphene nanoribbons. J Am Chem Soc. 2018;140:807–813.
  • Fischer FR Bottom-up synthesis of graphene nanoribbons on surfaces. In: Abe, A., Albertsson, A.-C., Coates, G. W.; et al., Eds. Advances in polymer science. Springer International Publishing; 2017. p. 33–65.
  • Clair S, de Oteyza DG. Controlling a chemical coupling reaction on a surface: tools and strategies for on-surface synthesis. Chem Rev. 2019;119:4717–4776.
  • Koskinen P, Malola S, Häkkinen H. Self-passivating edge reconstructions of graphene. Phys Rev Lett. 2008;101:115502.
  • Wassmann T, Seitsonen AP, Saitta AM, et al. Structure, stability, edge states, and aromaticity of graphene ribbons. Phys Rev Lett. 2008;101:096402.
  • Wassmann T, Seitsonen AP, Saitta AM, et al. Clar’s theory, π-electron distribution, and geometry of graphene nanoribbons. J Am Chem Soc. 2010;132:3440–3451.
  • Chen Z, Lin Y-M, Rooks MJ, et al. Graphene nano-ribbon electronics. Physica E. 2007;40:228–232.
  • Zhang X, Yazyev OV, Feng J, et al. Experimentally engineering the edge termination of graphene nanoribbons. ACS Nano. 2013;7:198–202.
  • Son Y-W, Cohen ML, Louie SG. Energy gaps in graphene nanoribbons. Phys Rev Lett. 2006;97:216803.
  • Nakada K, Fujita M, Dresselhaus G, et al. Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys Rev B. 1996;54:17954–17961.
  • Son Y-W, Cohen ML, Louie SG. Half-metallic graphene nanoribbons. Nature. 2006;444:347–349.
  • Yang L, Park C-H, Son Y-W, et al. Quasiparticle energies and band gaps in graphene nanoribbons. Phys Rev Lett. 2007;99:186801.
  • Merino-Díez N, Garcia-Lekue A, Carbonell-Sanromà E, et al. Width-dependent band gap in armchair graphene nanoribbons reveals Fermi level pinning on Au(111). ACS Nano. 2017;11:11661–11668.
  • Ruffieux P, Cai J, Plumb NC, et al. Electronic structure of atomically precise graphene nanoribbons. ACS Nano. 2012;6:6930–6935.
  • Cloke RR, Marangoni T, Nguyen GD, et al. Site-specific substitutional boron doping of semiconducting armchair graphene nanoribbons. J Am Chem Soc. 2015;137:8872–8875.
  • Pedramrazi Z, Chen C, Zhao F, et al. Concentration dependence of dopant electronic structure in bottom-up graphene nanoribbons. Nano Lett. 2018;18:3550–3556.
  • Carbonell-Sanromà E, Garcia-Lekue A, Corso M, et al. Electronic properties of substitutionally boron-doped graphene nanoribbons on a Au(111) surface. J Phys Chem C. 2018;122:16092–16099.
  • Deniz O, Sánchez-Sánchez C, Dumslaff T, et al. Revealing the electronic structure of silicon intercalated armchair graphene nanoribbons by scanning tunneling spectroscopy. Nano Lett. 2017;17:2197–2203.
  • Deniz O, Sánchez-Sánchez C, Jaafar R, et al. Electronic characterization of silicon intercalated chevron graphene nanoribbons on Au(111). Chem Commun. 1619–1622;54:2018.
  • Wang S, Talirz L, Pignedoli CA, et al. Giant edge state splitting at atomically precise graphene zigzag edges. Nat Commun. 2016;7:11507.
  • Su X, Xue Z, Li G, et al. Edge state engineering of graphene nanoribbons. Nano Lett. 2018;18:5744–5751.
  • Simonov KA, Vinogradov NA, Vinogradov AS, et al. Effect of substrate chemistry on the bottom-up fabrication of graphene nanoribbons: combined core-level spectroscopy and STM study. J Phys Chem C. 2014;118:12532–12540.
  • Han P, Akagi K, Federici Canova F, et al. Bottom-up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity. ACS Nano. 2014;8:9181–9187.
  • Simonov KA, Vinogradov NA, Vinogradov AS, et al. Comment on “Bottom-Up Graphene-Nanoribbon Fabrication Reveals Chiral Edges and Enantioselectivity”. ACS Nano. 2015;9:3399–3403.
  • Han P, Akagi K, Federici Canova F, et al. Reply to “Comment on ‘Bottom-Up Graphene-Nanoribbon Fabrication Reveals Chiral Edges and Enantioselectivity’”. ACS Nano. 2015;9:3404–3405.
  • Simonov KA, Vinogradov NA, Vinogradov AS, et al. From graphene nanoribbons on Cu(111) to nanographene on Cu(110): critical role of substrate structure in the bottom-up fabrication strategy. ACS Nano. 2015;9:8997–9011.
  • Han P, Akagi K, Federici Canova F, et al. Self-assembly strategy for fabricating connected graphene nanoribbons. ACS Nano. 2015;9:12035–12044.
  • Schulz F, Jacobse PH, Canova FF, et al. Precursor geometry determines the growth mechanism in graphene nanoribbons. J Phys Chem C. 2017;121:2896–2904.
  • Sánchez-Sánchez C, Dienel T, Deniz O, et al. Purely armchair or partially chiral: noncontact atomic force microscopy characterization of dibromo-bianthryl-based graphene nanoribbons grown on Cu(111). ACS Nano. 2016;10:8006–8011.
  • de Oteyza DG, García-Lekue A, Vilas-Varela M, et al. Substrate-independent growth of atomically precise chiral graphene nanoribbons. ACS Nano. 2016;10:9000–9008.
  • Merino-Díez N, Li J, Garcia-Lekue A, et al. Unraveling the electronic structure of narrow atomically precise chiral graphene nanoribbons. J Phys Chem Lett. 2018;9:25–30.
  • Li J, Merino-Díez N, Carbonell-Sanromà E, et al. Survival of spin state in magnetic porphyrins contacted by graphene nanoribbons. Sci Adv. 2018;4:eaaq0582.
  • Li J, Sanz S, Corso M, et al. Single spin localization and manipulation in graphene open-shell nanostructures. Nat Commun. 2019;10:200.
  • Li J, Friedrich N, Merino N, et al. Electrically addressing the spin of a magnetic porphyrin through covalently connected graphene electrodes. Nano Lett. 2019;19:3288–3294.
  • Bronner C, Stremlau S, Gille M, et al. Aligning the band gap of graphene nanoribbons by monomer doping. Angew Chem Int Ed. 2013;125:4518–4521.
  • Zhang Y, Zhang Y, Li G, et al. Direct visualization of atomically precise nitrogen-doped graphene nanoribbons. Appl Phys Lett. 2014;105:023101.
  • Vo TH, Perera UGE, Shekhirev M, et al. Nitrogen-doping induced self-assembly of graphene nanoribbon-based two-dimensional and three-dimensional metamaterials. Nano Lett. 2015;15:5770–5777.
  • Kawai S, Saito S, Osumi S, et al. Atomically controlled substitutional boron-doping of graphene nanoribbons. Nat Commun. 2015;6:8098.
  • Carbonell-Sanromà E, Hieulle J, Vilas-Varela M, et al. Doping of graphene nanoribbons via functional group edge modification. ACS Nano. 2017;11:7355–7361.
  • Zhang Y-F, Zhang Y, Li G, et al. Sulfur-doped graphene nanoribbons with a sequence of distinct band gaps. Nano Res. 2017;10:3377–3384.
  • Cao Y, Qi J, Zhang Y-F, et al. Tuning the morphology of chevron-type graphene nanoribbons by choice of annealing temperature. Nano Res. 2018;11:6190–6196.
  • Rizzo DJ, Wu M, Tsai H-Z, et al. Length-dependent evolution of type II heterojunctions in bottom-up-synthesized graphene nanoribbons. Nano Lett. 2019;19:3221–3228.
  • Blankenburg S, Cai J, Ruffieux P, et al. Intraribbon heterojunction formation in ultranarrow graphene nanoribbons. ACS Nano. 2020–2025;6:2012.
  • Ma C, Liang L, Xiao Z, et al. Seamless staircase electrical contact to semiconducting graphene nanoribbons. Nano Lett. 2017;17:6241–6247.
  • Marangoni T, Haberer D, Rizzo DJ, et al. Heterostructures through divergent edge reconstruction in nitrogen-doped segmented graphene nanoribbons. Chem Eur J. 2016;22:13037–13040.
  • Wang S, Kharche N, Costa Girão E, et al. Quantum dots in graphene nanoribbons. Nano Lett. 2017;17:4277–4283.
  • Carbonell-Sanromà E, Brandimarte P, Balog R, et al. Quantum dots embedded in graphene nanoribbons by chemical substitution. Nano Lett. 2017;17:50–56.
  • Lv Y, Huang Q, Chang S, et al. Interface coupling as a crucial factor for spatial localization of electronic states in a heterojunction of graphene nanoribbons. Phys Rev Appl. 2019;11:024026.
  • Jacobse PH, Kimouche A, Gebraad T, et al. Electronic components embedded in a single graphene nanoribbon. Nat Commun. 2017;8:119.
  • Llinas JP, Fairbrother A, Borin Barin G, et al. Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons. Nat Commun. 2017;8:633.
  • Lafferentz L, Ample F, Yu H, et al. Conductance of a single conjugated polymer as a continuous function of its length. Science. 2009;323:1193–1197.
  • Koch M, Ample F, Joachim C, et al. Voltage-dependent conductance of a single graphene nanoribbon. Nat Nanotechnol. 2012;7:713–717.
  • Bronner C, Durr RA, Rizzo DJ, et al. Hierarchical on-surface synthesis of graphene nanoribbon heterojunctions. ACS Nano. 2018;12:2193–2200.
  • Ma C, Xiao Z, Zhang H, et al. Controllable conversion of quasi-freestanding polymer chains to graphene nanoribbons. Nat Commun. 2017;8:14815.
  • Nguyen GD, Tsai H-Z, Omrani AA, et al. Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor. Nat Nanotechnol. 2017;12:1077–1082.
  • Ma C, Xiao Z, Huang J, et al. Direct writing of heterostructures in single atomically precise graphene nanoribbons. Phys Rev Mater. 2019;3:016001.
  • Cao T, Zhao F, Louie SG. Topological phases in graphene nanoribbons: junction states, spin centers, and quantum spin chains. Phys Rev Lett. 2017;119:076401.
  • Lee Y-L, Zhao F, Cao T, et al. Topological phases in cove-edged and chevron graphene nanoribbons: geometric structures, Z2 invariants, and junction states. Nano Lett. 2018;18:7247–7253.
  • Lin K-S, Chou M-Y. Topological properties of gapped graphene nanoribbons with spatial symmetries. Nano Lett. 2018;18:7254–7260.
  • Fu L, Kane CL. Topological insulators with inversion symmetry. Phys Rev B. 2007;76:045302.
  • Zak J. Berry’s phase for energy bands in solids. Phys Rev Lett. 1989;62:2747–2750.
  • Delplace P, Ullmo D, Montambaux G. Zak phase and the existence of edge states in graphene. Phys Rev B. 2011;84:195452.
  • Klinovaja J, Loss D. Giant spin-orbit interaction due to rotating magnetic fields in graphene nanoribbons. Phys Rev X. 2013;3:011008.
  • Bennett PB, Pedramrazi Z, Madani A, et al. Bottom-up graphene nanoribbon field-effect transistors. Appl Phys Lett. 2013;103:253114.
  • Zhao S, Borin Barin G, Rondin L, et al. Optical investigation of on-surface synthesized armchair graphene nanoribbons. Phys Stat Sol (b). 2017;254:1700223.
  • Borin Barin G, Fairbrother A, Rotach L, et al. Surface-synthesized graphene nanoribbons for room temperature switching devices: substrate transfer and ex situ characterization. ACS Appl Nano Mater. 2019;2:2184–2192.
  • Khajetoorians AA, Wegner D, Otte AF, et al. Creating designer quantum states of matter atom-by-atom. Nature Reviews Physics. https://doi.org/10.1038/s42254-019-0108-5. 2019.
  • Qi XL, Zhang SC. Topological insulators and superconductors. Rev. Mod Phys. 2011;83:1057–1110.
  • Mourik V, Zuo K, Frolov SM, et al. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science. 2012;336:1003–1007.
  • Nadj-Perge S, Drozdov IK, Li J, et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science. 2014;346:602–607.
  • Sato M, Ando Y. Topological superconductors: a review. Rep. Prog Phys. 2017;80:076501.
  • Ruby M, Pientka F, Peng Y, et al. End states and subgap structure in proximity-coupled chains of magnetic adatoms. Phys Rev Lett. 2015;115:197204.
  • Feldman BE, Randeria MT, Li J, et al. High-resolution studies of the Majorana atomic chain platform. Nat Phys. 2016;13:286–291.
  • Pawlak R, Kisiel M, Klinovaja J, et al. Probing atomic structure and Majorana wavefunctions in mono-atomic Fe chains on superconducting Pb surface. Npj Quantum Inf. 2016;2:16035.
  • Ruby M, Heinrich BW, Peng Y, et al. Exploring a proximity- coupled Co chain on Pb(110) as a possible Majorana platform. Nano Lett. 2017;17:4473–4477.
  • Kim H, Palacio-Morales A, Posske T, et al. Toward tailoring Majorana bound states in artificially constructed magnetic atom chains on elemental superconductors. Sci Adv. 2018;4:eaar5251.
  • Ménard GC, Guissart S, Brun C, et al. Two-dimensional topological superconductivity in Pb/Co/Si(111). Nat Commun. 2017;8:2040.
  • Palacio-Morales A, Mascot E, Cocklin S, et al. Atomic-scale interface engineering of Majorana edge modes in a 2D magnet-superconductor hybrid system. Sci. Adv. 2019;5:eaav6600.
  • Röntynen J, Ojanen T. Topological superconductivity and high Chern numbers in 2D ferromagnetic Shiba lattices. Phys Rev Lett. 2015;114:236803.
  • Pöyhönen K, Sahlberg I, Westström A, et al. Amorphous topological superconductivity in a Shiba glass. Nat Commun. 2018;9:2103.