5,681
Views
18
CrossRef citations to date
0
Altmetric
Review Articles

On machine learning force fields for metallic nanoparticles

, , &
Article: 1654919 | Received 05 Jun 2019, Accepted 05 Aug 2019, Published online: 12 Sep 2019

References

  • Baletto F, Ferrando R. Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev Mod Phys. 2005;77:780.
  • Wang Z, Palmer RE. Experimental Evidence for Fluctuating, Chiral-Type Au55 Clusters by Direct Atomic Imaging. Nano letters. 2012;12:5510.
  • Foster DM, Ferrando R, Palmer RE. Experimental determination of the energy difference between competing isomers of deposited, size-selected gold nanoclusters. Nat Commun. 2018;9:1323.
  • Sun CQ. Size dependence of nanostructures: Impact of bond order deficiency. Prog Solid State Chem. 2007;35:1.
  • Rossi K, Asara GG, Baletto F. A genomic characterisation of monometallic nanoparticles. Phys Chem Chem Phys. 2019;21:4888.
  • Noguez C. Surface plasmons on metal nanoparticles:  the influence of shape and physical environment. J Phys Chem C. 2007;111:3806.
  • Cuenya BR. Synthesis and catalytic properties of metal nanoparticles: size, shape, support, composition, and oxidation state effects. Thin Solid Films. 2010;518:3127.
  • Giljohann D, Seferos D, Daniel W, et al. Biocatalytic desymmetrization of an atropisomer with both an enantioselective oxidase and ketoreductases. Angew Chem. 2010;49:3280.
  • Ferrando R, Jellinek J, Johnston RL. Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev. 2008;108:846.
  • Rahm JM, Erhart P. Beyond magic numbers: atomic scale equilibrium nanoparticle shapes for any size. Nano Lett. 2017;17:5775.
  • Li Z, Scheraga HA. Monte Carlo-minimization approach to the multiple-minima problem in protein folding. Proc Nat Acad Sci. 1987;84:6611.
  • Doye JPK, Wales DJ. Global minima for transition metal clusters described by sutton–chen potentials. New J Chem. 1998;22:733.
  • Rossi G, Ferrando R. Searching for low-energy structures of nanoparticles: a comparison of different methods and algorithms. J Phys. 2009;21:084208.
  • Barcaro G, Fortunelli A, Rossi G, et al. Electronic and structural shell closure in AgCu and AuCu nanoclusters. J Phys Chem B. 2006;110:23197.
  • Calvo F, Schebarchov D, Wales DJ. Grand and semigrand canonical basin-hopping. J Chem Theory Comput. 2016;12:902.
  • Pickard CJ. Hyperspatial optimization of structures. Phys Rev B. 2019;054102:1.
  • Johnston RL. Evolving better nanoparticles: genetic algorithms for optimising cluster geometries. Dalton Trans. 2003;4193.
  • Heiles S, Johnston RL. Global optimization of clusters using electronic structure methods. Int J Quantum Chem. 2013;113:2091.
  • Lazauskas T, Sokol AA, Woodley SM. An efficient genetic algorithm for structure prediction at the nanoscale. Nanoscale. 2017;9:3850.
  • Lv J, Wang Y, Zhu L, et al. Particle-swarm structure prediction on clusters. J Chem Phys. 2012;137:084104.
  • Lepeshkin SV, Baturin VS, Uspenskii YA, et al. Method for simultaneous prediction of atomic structure and stability of nanoclusters in a wide area of compositions. J Phys Chem Lett. 2018;10:102.
  • Trygubenko SA, Wales DJ. Kinetic analysis of discrete path sampling stationary point databases. Mol Phys ISSN. 2006;104:1497.
  • Koslover EF, Wales JD. Comparison of double-ended transition state search methods. J Chem Phys. 2017;12.
  • Laio A, Parrinello M. Escaping free-energy minima. Proc Nat Acad Sci. 2002;99:12562.
  • Laio A, Gervasio FL. Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep Prog Phys. 2008;71:126601.
  • Pavan L, Rossi K, Baletto F. Metallic nanoparticles meet metadynamics. J Chem Phys. 2015;143:184304.
  • Gould AL, Rossi K, Catlow CRA, et al. Controlling structural transitions in AuAg nanoparticles through precise compositional design. J Phys Chem Lett. 2016;7:4414.
  • Rossi K, Baletto F. The effect of chemical ordering and lattice mismatch on structural transitions in phase segregating nanoalloys. Phys Chem Chem Phys. 2017;19:11057.
  • Skilling J. Nested sampling for general Bayesian computation. Bayesian Anal. 2006;1:833.
  • Partay LB, Bartok AP, Csanyi G. Efficient sampling of atomic configurational spaces. J Phys Chem A. 2010;114:10502.
  • Rossi K, Pártay LB, Csányi G, et al. Thermodynamics of CuPt nanoalloys. Sci Rep. 2018;8:9150.
  • Dorrell J, Pártay LB. Thermodynamics and the potential energy landscape: case study of small water clusters. Phys Chem Chem Phys. 2019;21:7305–7312.
  • Doye JPK, Wales DJ. On potential energy surfaces and relaxation to the global minimum. J Chem Phys. 1996;8428.
  • Fernandez M, Barnard AS. Identification of Nanoparticle Prototypes and Archetypes. ACS Nano. 2015;9:11980.
  • Yan T, Sun B, Barnard AS. Predicting archetypal nanoparticle shapes using a combination of thermodynamic theory and machine learning. Nanoscale. 2018;10:21818.
  • Gasparotto P, Meissner RH, Ceriotti M. Recognizing local and global structural motifs at the atomic scale. J Chem Theory Comput. 2018;14:486.
  • Timoshenko J, Lu D, Lin Y, et al. Supervised Machine-Learning-Based Determination of Three-Dimensional Structure of Metallic Nanoparticles. J Phys Chem Lett. 2017;8:5091.
  • Timoshenko J, Wrasman CJ, Luneau M, et al. Probing atomic distributions in mono- and bimetallic nanoparticles by supervised machine learning. Nano Lett. 2019;19:520.
  • Madsen J, Liu P, Kling J, et al. A deep learning approach to identify local structures in atomic-resolution transmission electron microscopy images. Adv Theory Simul. 2018;1:1800037.
  • Sumpter BG, Noid DW. Potential energy surfaces for macromolecules. A neural network technique. Chem Phys Lett. 1992;192:455.
  • Blank TB, Brown SD, Calhoun AW, et al. Neural network models of potential energy surfaces. J Chem Phys. 1995;103:4129.
  • Gassner H, Probst M, Lauenstein A, et al. Representation of intermolecular potential functions by neural networks. J Phys Chem A. 1998;102:4596.
  • Behler J, Parrinello M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys Rev Lett. 2007;98:146401.
  • Kohn W. Density functional and density matrix method scaling linearly with the number of atoms. Phys Rev Lett. 1996;76.
  • Botu V, Ramprasad R. Adaptive machine learning framework to accelerate ab initio molecular dynamics. Int J Quantum Chem. 2015;115(16):1074-1083.
  • Botu V, Ramprasad R. Learning scheme to predict atomic forces and accelerate materials simulations. Phys Rev B. 2015;92:94305.
  • Glielmo A, Sollich P, De Vita A. Accurate interatomic force fields via machine learning with covariant kernels. Phys Rev B. 2017;95:1.
  • Li Z, Kermode JR, De Vita A. Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces. Phys Rev Lett. 2015;114:96405.
  • Shapeev AV. Moment tensor potentials: a class of systematically improvable interatomic potentials. Multiscale Model Simul. 2016;14:1153.
  • Xie T, Grossman JC. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys Rev Lett. 2018;120:145301.
  • Isayev O, Oses C, Toher C, et al. Universal fragment descriptors for predicting properties of inorganic crystals. Nat Commun. 2017;8:15679 EP.
  • Schütt KT, Sauceda HE, Kindermans P-J, et al. SchNet–A deep learning architecture for molecules and materials. J Chem Phys. 2018; 148:241722.
  • Csányi G., On representing chemical environments. Phys Rev B. 2013;184115(87):219902.
  • Zeni C, Rossi K, Glielmo A, et al. Building machine learning force fields for nanoclusters. J Chem Phys. 2018;148:1802.01417.
  • Artrith N, Urban A, Ceder G. Efficient and accurate machine-learning interpolation of atomic energies in compositions with many species. Phys Rev B. 2017;96:014112.
  • Imbalzano G, Anelli A, Giofré D, et al. Automatic selection of atomic fingerprints and reference configurations for machine-learning potentials. J Chem Phys. 2018; 148(24):241730.
  • Glielmo A, Zeni C, De Vita A. Efficient nonparametric-body force fields from machine learning. Phys Rev B. 2018;97:1.
  • Artrith N, Behler J. High-dimensional neural network potentials for metal surfaces: A prototype study for copper. Phys Rev B. 2012;85:045439.
  • Artrith N, Hiller B, Behler J. Neural network potentials for metals and oxides - first applications to copper clusters at zinc oxide. Phys Status Solidi(b). 2013;1203:1191.
  • Artrith N, Kolpak AM. Understanding the Composition and Activity of Electrocatalytic Nanoalloys in Aqueous Solvents: A Combination of DFT and Accurate Neural Network Potentials. Nano Lett. 2014;14:2670.
  • Artrith N, Kolpak AM. Grand canonical molecular dynamics simulations of Cu–Au nanoalloys in thermal equilibrium using reactive ANN potentials. Comput Mater Sci. 2015;110:20.
  • Chiriki S, Bulusu SS. Modeling of DFT quality neural network potential for sodium clusters: Application to melting of sodium clusters (Na20 to Na40). Chem Phys Lett. 2016;652:130.
  • Jindal S, Bulusu SS. Neural network potentials for dynamics and thermodynamics of gold nanoparticles. 2017;28:146(8):084314.
  • Ulissi ZW, Tang MT, Xiao J, et al. Machine-Learning Methods Enable Exhaustive Searches for Active Bimetallic Facets and Reveal Active Site Motifs for CO2 Reduction. ACS Catal. 2017;7:6600.
  • Ouyang R, Xie Y, Jiang D-E. Global minimization of gold clusters by combining neural network potentials and the basin-hopping method. Nanoscale. 2015;7:14817.
  • Chiriki S, Jindal S, Bulusu SS. c-T phase diagram and Landau free energies of (AgAu) 55 nanoalloy via neural-network molecular dynamic simulations. J Chem Phys. 2017;147:154303.
  • Kolsbjerg EL, Peterson AA, Hammer B. Neural-network-enhanced evolutionary algorithm applied to supported metal nanoparticles. Phys Rev B. 2018;97:195424.
  • Sun G, Sautet P. Metastable structures in cluster catalysis from first-principles: structural ensemble in reaction conditions and metastability triggered reactivity. J Am Chem Soc. 2018;140:2812.
  • Hajinazar S, Sandoval ED, Cullo AJ, et al. Multitribe evolutionary search for stable Cu–Pd–Ag nanoparticles using neural network models. Phys Chem Chem Phys. 2019;21:8729.
  • Bartók AP, Csányi G. Gaussian approximation potentials: A brief tutorial introduction. Int J Quantum Chem. 2015;115:1051.
  • Chiriki SBulusu SS. Neural network potentials for dynamics and thermodynamics of gold nanoparticles. J Chem Phys. 2017; 146(8): 084314.
  • Jindal S, Bulusu SS. A transferable artificial neural network model for atomic forces in nanoparticles. J Chem Phys. 2018;149:194101.
  • Thompson A, Swiler L, Trott C, et al. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials. J Comput Phys. 2015;285:316-330.
  • Willatt MJ, Musil F, Ceriotti M. Atom-density representations for machine learning. J Chem Phys. 2019;150:154110.
  • Deringer VL, Csányi G. Machine learning based interatomic potential for amorphous carbon. Phys Rev B. 2017;95:094203.
  • Vandermause J, Torrisi SB, Batzner S, et al. On-the-Fly Bayesian Active Learning of Interpretable Force-Fields for Atomistic Rare Events. arXiv:190402042v1 [phys Comput Phys]. (2019).
  • Neal RM. Bayesian learning for neural networks. Vol. 118. USA: Springer Science & Business Media; 2012.
  • Rasmussen CKI, Edward C, Williams. Gaussian processes for machine learning. USA: MIT Press; 2006.
  • Jinnouchi R, Asahi R. Predicting Catalytic Activity of Nanoparticles by a DFT-Aided Machine-Learning Algorithm. J Phys Chem Lett. 2017;8:4279.
  • Jinnouchi R, Hirata H, Asahi R. Extrapolating energetics on clusters and single-crystal surfaces to nanoparticles by machine-learning scheme. J Phys Chem C. 2017;121.
  • Hornik K. Approximation capabilities of multilayer feedforward networks. Neural Networks. 1991;4:251.
  • Csáji BC. [MSc Thesis]. Budapest, Hungary: Eötvös Loránd University (ELTE); 2001.
  • Kang J, Noh SH, Hwang J, et al. First-principles database driven computational neural network approach to the discovery of active ternary nanocatalysts for oxygen reduction reaction. Phys Chem Chem Phys. 2018;20:24539.
  • Goodfellow I, Bengio Y, Courville A. Deep learning. USA: MIT Press; 2016. Available from: http://www.deeplearningbook.org
  • Ryczko K, Mills K, Luchak I, et al. Convolutional neural networks for atomistic systems. Comput Mater Sci. 2018;149:134.
  • Glielmo A, Zeni C, Fekete Á, et al. Building non parametric n-body force fields using Gaussian process regression. arXiv:190507626 [phys Comput Phys]. (2019).
  • Zeni C, Ádám F, Glielmo A. “MFF a python package for building nonparametric force fields from machine learning”. 2018.
  • Gastegger M, Marquetand P. Molecular Dynamics with Neural-Network Potentials. arXiv:1812.07676. (2018).
  • Jennings PC, Lysgaard S, Hummelshøj JS, et al. Genetic algorithms for computational materials discovery accelerated by machine learning. NPJ Comput Mater. 2019;5:46.
  • Bartók AP, De S, Poelking C, et al. Machine learning unifies the modeling of materials and molecules. Sci Adv. 2017;3:1.
  • Musil F, De S, Yang J, et al. Machine learning for the structure–energy–property landscapes of molecular crystals. Chem Sci. 2018;9:1289.
  • Mahoney MW, Drineas P. CUR matrix decompositions for improved data analysis. Proc Nat Acad Sci. 2009;106:697.
  • Bernstein N, Csányi G, Deringer VL. De novo exploration and self-guided learning of potential-energy surfaces. arXiv:1905.10407. (2019).
  • Zhai H, Alexandrova AN. Ensemble-average representation of pt clusters in conditions of catalysis accessed through GPU accelerated deep neural network fitting global optimization. J Chem Theory Comput. 2016;12:6213.
  • Huo H, Rupp M. Unified Representation of Molecules and Crystals for Machine Learning. arXiv:1704.06439. (2017).
  • Rupp M, Tkatchenko A, Müller K-R, et al. Fast and accurate modeling of molecular atomization energies with machine learning. Phys Rev Lett. 2012;108:058301.
  • Jäger MOJ, Morooka EV, Canova FF, et al. Machine learning hydrogen adsorption on nanoclusters through structural descriptors. NPJ Comput Mater. (2018).
  • Aguado A, Oleg K. First-principles determination of the structure of NaN and Na–N clusters with up to 80 atoms. J Chem Phys. 2011;164304.