3,106
Views
30
CrossRef citations to date
0
Altmetric
Review Articles

Distinctive characteristics of carrier-phonon interactions in optically driven semiconductor quantum dots

ORCID Icon, ORCID Icon &
Article: 1655478 | Received 30 Mar 2019, Accepted 17 Jul 2019, Published online: 09 Sep 2019

References

  • Woggon U. Optical properties of semiconductor quantum dots. Berlin: Springer Verlag; 1997.
  • Jacak L, Hawrylak P, Wojs A. Quantum dots. Berlin: Springer; 1998.
  • Michler P (ed). Single quantum dots: Fundamentals, applications and new concepts. Vol. 90. Springer-Verlag Berlin Heidelberg; 2003.
  • Wang ZM, editor. Self-assembled quantum dots. (Lecture notes in nanoscale science and technology). Vol. 1. New York: Springer; 2008.
  • Ferreira R, Bastard G. Capture and relaxation in self-assembled semiconductor quantum dots. San Rafael, US-CA: Morgan & Claypool Publishers; 2015.
  • Bimberg D, Grundmann M, Ledentsov N. Quantum dot heterostructures. Chichester: Wiley; 1999.
  • Selig M, Berghäuser G, Raja A, et al. Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides. Nat Commun. 2016;7:718.
  • Brem S, Selig M, Berghaeuser G, et al. Exciton relaxation cascade in two-dimensional transition metal dichalcogenides. Sci Rep. 2018;8:8238.
  • Bockelmann U, Bastard G. Phonon scattering and energy relaxation in two-, one-. and zero-dimensional electron gases. Phys Rev B. 1990;42:8947.
  • Benisty H, Sotomayor-Torres CM, Weisbuch C. Intrinsic mechanism for the poor luminescence properties of quantum-box systems. Phys Rev B. 1991;44:10945.
  • Heitz R, Born H, Guffarth F, et al. Existence of a phonon bottleneck for excitons in quantum dots. Phys Rev B. 2001;64:241305(R).
  • Urayama J, Norris TB, Singh J, et al. Observation of phonon bottleneck in quantum dot electronic relaxation. Phys Rev Lett. 2001;86:4930.
  • Besombes L, Kheng K, Marsal L, et al. Acoustic phonon broadening mechanism in single quantum dot emission. Phys Rev B. 2001;63:155307.
  • Krummheuer B, Axt VM, Kuhn T. Theory of pure dephasing and the resulting absorption line shape in semiconductor quantum dots. Phys Rev B. 2002;65:195313.
  • Förstner J, Weber C, Danckwerts J, et al. Phonon-assisted damping of Rabi oscillations in semiconductor quantum dots. Phys Rev Lett. 2003;91:127401.
  • Machnikowski P, Jacak L. Resonant nature of phonon-induced damping of Rabi oscillations in quantum dots. Phys Rev B. 2004;69:193302.
  • Krügel A, Axt VM, Kuhn T, et al. The role of acoustic phonons for Rabi oscillations in semiconductor quantum dots. Appl Phys B. 2005;81:897.
  • Mogilevtsev D, Nisovtsev AP, Kilin S, et al. Non-Markovian damping of Rabi oscillations in semiconductor quantum dots. J Phys Condens Matter. 2009;21:055801.
  • Ramsay AJ, Gopal AV, Gauger EM, et al. Damping of exciton Rabi rotations by acoustic phonons in optically excited InGaAs/GaAs quantum dots. Phys Rev Lett. 2010;104:17402.
  • McCutcheon DPS, Dattani NS, Gauger EM, et al. A general approach to quantum dynamics using a variational master equation: application to phonon-damped Rabi rotations in quantum dots. Phys Rev B. 2011;84:081305.
  • Glässl M, Croitoru MD, Vagov A, et al. Influence of the pulse shape and the dot size on the decay and reappearance of Rabi rotations in laser driven quantum dots. Phys Rev B. 2011;84:125304.
  • Ramsay AJ. A review of the coherent optical control of the exciton and spin states of semiconductor quantum dots. Semicond Sci Technol. 2010;25:103001.
  • Glässl M, Barth AM, Axt VM. Proposed robust and high-fidelity preparation of excitons and biexcitons in semiconductor quantum dots making active use of phonons. Phys Rev Lett. 2013;110:147401.
  • Reiter DE, Kuhn T, Glässl M, et al. The role of phonons for exciton and biexciton generation in an optically driven quantum dot. J Phys Condens Matter. 2014;26(42):423203.
  • Ardelt PL, Hanschke L, Fischer KA, et al. Dissipative preparation of the exciton and biexciton in self-assembled quantum dots on picosecond time scales. Phys Rev B. 2014;90:241404.
  • Bounouar S, Müller M, Barth AM, et al. Phonon-assisted robust and deterministic two-photon biexciton preparation in a quantum dot. Phys Rev B. 2015;91:161302.
  • Quilter JH, Brash AJ, Liu F, et al. Phonon-assisted population inversion of a single InGaAs/GaAs quantum dot by pulsed laser excitation. Phys Rev Lett. 2015;114:137401.
  • Ates S, Ulrich SM, Ulhaq A, et al. Non-resonant dot–cavity coupling and its potential for resonant single-quantum-dot spectroscopy. Nat Photon. 2009;3:724.
  • Naesby A, Suhr T, Kristensen PT, et al. Influence of pure dephasing on emission spectra from single photon sources. Phys Rev A. 2008;78:045802.
  • Hohenester U, Laucht A, Kaniber M, et al. Phonon-assisted transitions from quantum dot excitons to cavity photons. Phys Rev B. 2009;80:201311.
  • Hohenester U. Cavity quantum electrodynamics with semiconductor quantum dots: role of phonon-assisted cavity feeding. Phys Rev B. 2010;81:155303.
  • Majumdar A, Kim E, Gong Y, et al. Phonon mediated off-resonant quantum dot–cavity coupling under resonant excitation of the quantum dot. Phys Rev B. 2011;84:085309.
  • Hughes S, Yao P, Milde F, et al. Influence of electron-acoustic phonon scattering on off-resonant cavity feeding within a strongly coupled quantum-dot cavity system. Phys Rev B. 2011;83:165313.
  • Florian M, Gartner P, Gies C, et al. Phonon-mediated off-resonant coupling effects in semiconductor quantum-dot lasers. New J Phys. 2013;15:035019.
  • Calic M, Gallo P, Felici M, et al. Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities. Phys Rev Lett. 2011;106:227402.
  • Laucht A, Hauke N, Neumann A, et al. Nonresonant feeding of photonic crystal nanocavity modes by quantum dots. J Appl Phys. 2011;109:102404.
  • Cygorek M, Barth AM, Ungar F, et al. Nonlinear cavity feeding and unconventional photon statistics in solid-state cavity QED revealed by many-level real-time path-integral calculations. Phys Rev B. 2017;96:201201.
  • Steer MJ, Mowbray DJ, Tribe WR, et al. Electronic energy levels and energy relaxation mechanisms in self-organized InAs/GaAs quantum dots. Phys Rev B. 1996;54:17738.
  • Heitz R, Veit M, Ledentsov NN, et al. Energy relaxation by multiphonon processes in InAs/GaAs quantum dots. Phys Rev B. 1997;56:10435.
  • Ignatiev IV, Kozin IE, Davydov VG, et al. Phonon resonances in photoluminescence spectra of self-assembled quantum dots in an electric field. Phys Rev B. 2001;63:075316.
  • Marcinkevičius S, Gaarder A, Leon R. Rapid carrier relaxation by phonon emission in In0.6Ga0.4As/GaAs quantum dots. Phys Rev B. 2001;64:115307.
  • Hameau S, Guldner Y, Verzelen O, et al. Strong electron-phonon coupling regime in quantum dots: evidence for everlasting resonant polarons. Phys Rev Lett. 1999;83:4152.
  • Hameau S, Isaia JN, Guldner Y, et al. Far-infrared magnetospectroscopy of polaron states in self-assembled InAs/GaAs quantum dots. Phys Rev B. 2002;65:085316.
  • Verzelen O, Ferreira R, Bastard G. Polaron lifetime and energy relaxation in semiconductor quantum dots. Phys Rev B. 2000;62:R4809.
  • Jacak L, Krasnyj J, Jacak D, et al. Anharmonicity induced polaron relaxation in GaAs/InAs quantum dots. Phys Rev B. 2002;65:113305.
  • Jacak L, Krasnyj J, Jacak D, et al. Magneto-polaron in a weakly elliptical InAs/GaAs quantum dot. Phys Rev B. 2003;67:035303.
  • Zibik EA, Wilson LR, Green RP, et al. Intraband relaxation via polaron decay in InAs self-assembled quantum dots. Phys Rev B. 2004;70:161305(R).
  • Michler P, Kiraz A, Becher C, et al. A quantum dot single-photon turnstile device. Science. 2000;290:2282.
  • Gazzano O, Michaelis De Vasconcellos S, Arnold C, et al. Bright solid-state sources of indistinguishable single photons. Nat Commun. 2013;4:1425.
  • Unsleber S, He YM, Gerhardt S, et al. Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency. Opt Express. 2016;24:8539.
  • Ding X, He Y, Duan ZC, et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys Rev Lett. 2016;116:020401.
  • He YM, Liu J, Maier S, et al. Deterministic implementation of a bright, on-demand single-photon source with near-unity indistinguishability via quantum dot imaging. Optica. 2017;4:802.
  • Senellart P, Solomon G, White A. High-performance semiconductor quantum-dot single-photon sources. Nat Nanotech. 2017;12:1026.
  • Müller M, Vural H, Schneider C, et al. Quantum-dot single-photon sources for entanglement enhanced interferometry. Phys Rev Lett. 2017;118:257402.
  • Reindl M, Weber JH, Huber D, et al. Highly indistinguishable single photons from incoherently and coherently excited GaAs quantum dots. 2019. arXiv:190111251.
  • Akopian N, Lindner NH, Poem E, et al. Entangled photon pairs from semiconductor quantum dots. Phys Rev Lett. 2006;96:130501.
  • Winik R, Cogan D, Don Y, et al. On-demand source of maximally entangled photon pairs using the biexciton-exciton radiative cascade. Phys Rev B. 2017;95:235435.
  • Orieux A, Versteegh MAM, Jöns KD, et al. Semiconductor devices for entangled photon pair generation: a review. Rep Prog Phys. 2017;80:076001.
  • Chen Y, Zopf M, Keil R, et al. Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna. Nat Commun. 2018;9:2994.
  • Heindel T, Thoma A, von Helversen M, et al. A bright triggered twin-photon source in the solid state. Nat Commun. 2017;8:14870.
  • Huber D, Reindl M, Huo Y, et al. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots. Nat Commun. 2017;8:15506.
  • Heinze D, Zrenner A, Schumacher S. Polarization-entangled twin photons from two-photon quantum-dot emission. Phys Rev B. 2017;95:245306.
  • Huber D, Reindl M, Aberl J, et al. Semiconductor quantum dots as an ideal source of polarization-entangled photon pairs on-demand: a review. J Opt. 2018;20:073002.
  • Delteil A, Sun Z, Fält S, et al. Realization of a cascaded quantum system: heralded absorption of a single photon qubit by a single-electron charged quantum dot. Phys Rev Lett. 2017;118:177401.
  • Tannor DJ. Introduction to quantum mechanics. Sausalito, California: University Science Books; 2007.
  • Jaynes ET, Cummings FW. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc IEEE. 1963;51:89.
  • Shore BW, Knight PL. The Jaynes-Cummings Model. J Mod Opt. 1993;40(7):1195.
  • Gerry CC, Knight PL. Introductory quantum optics. Cambridge: Cambridge University Press; 2005.
  • Poem E, Kodriano Y, Tradonsky C, et al. Accessing the dark exciton with light. Nat Phys. 2010;6:993.
  • Lüker S, Kuhn T, Reiter DE. Direct optical state preparation of the dark exciton in a quantum dot. Phys Rev B. 2015;92:201305.
  • Lüker S, Kuhn T, Reiter DE. Phonon-assisted dark exciton preparation in a quantum dot. Phys Rev B. 2017;95:195305.
  • Lüker S, Reiter DE. A review on optical excitation of semiconductor quantum dots under the influence of phonons. Semicond Sci Technol. 2019;34:063002.
  • Holtkemper M, Reiter DE, Kuhn T. Influence of quantum dot geometry on p-shell transitions in differently charged quantum dots. Phys Rev B. 2018;97:075308.
  • Vagov A, Axt VM, Kuhn T, et al. Nonmonotonous temperature dependence of the initial decoherence in quantum dots. Phys Rev B. 2004;70:201305.
  • Ramsay AJ, Godden TM, Boyle SJ, et al. Phonon-induced Rabi-frequency renormalization of optically driven single InGaAs/GaAs quantum dots. Phys Rev Lett. 2010;105:177402.
  • Krummheuer B, Axt VM, Kuhn T, et al. Pure dephasing and phonon dynamics in GaAs- and GaN-based quantum dot structures: interplay between material parameters and geometry. Phys Rev B. 2005;71:235329.
  • Ostapenko I, Hönig G, Rodt S, et al. Exciton acoustic-phonon coupling in single GaN/AlN quantum dots. Phys Rev B. 2012;85:081303.
  • Schuh K, Seebeck J, Lorke M, et al. Rabi oscillations in semiconductor quantum dots revisited: influence of LO-phonon collisions. Appl Phys Lett. 2009;94:201108.
  • Schuh K, Jahnke F, Lorke M. Rapid adiabatic passage in quantum dots: influence of scattering and dephasing. Appl Phys Lett. 2011;99:011105.
  • Klimov VI, Ivanov SA, Nanda J, et al. Single-exciton optical gain in semiconductor nanocrystals. Nature. 2007;447:441.
  • Sauer S, Daniels JM, Reiter DE, et al. Lattice fluctuations at a double phonon frequency with and without squeezing: an exactly solvable model of an optically excited quantum dot. Phys Rev Lett. 2010;105:157401.
  • Arora AK, Rajalakshmi M, Ravindran TR, et al. Raman spectroscopy of optical phonon confinement in nanostructured materials. J Raman Spectrosc. 2007;38:604.
  • Woggon U, Gindele F, Wind O, et al. Exchange interaction and phonon confinement in CdSe quantum dots. Phys Rev B. 1996;54:1506.
  • Fomin VM, Gladilin VN, Devreese JT, et al. Photoluminescence of spherical quantum dots. Phys Rev B. 1998;57:2415.
  • Yadav HK, Gupta V, Sreenivas K, et al. Low frequency raman scattering from acoustic phonons confined in ZnO nanoparticles. Phys Rev Lett. 2006;97:085502.
  • Klimov VI, McBranch DW. Femtosecond 1P-to- 1S electron relaxation in strongly confined semiconductor nanocrystals. Phys Rev Lett. 1998;80:4028.
  • Nandakumar P, Vijayan C, Rajalakshmi M, et al. Raman spectra of CdS nanocrystals in nafion: longitudinal optical and confined acoustic phonon modes. Physica E. 2001;11:377.
  • Klimov VI, McBranch DW, Leatherdale CA, et al. Electron and hole relaxation pathways in semiconductor quantum dots. Phys Rev B. 1999;60:13740.
  • Cooney RR, Sewall SL, Anderson KEH, et al. Breaking the phonon bottleneck for holes in semiconductor quantum dots. Phys Rev Lett. 2007;98:177403.
  • Hyeon-Deuk K, Prezhdo OV. Photoexcited electron and hole dynamics in semiconductor quantum dots: phonon-induced relaxation, dephasing, multiple exciton generation and recombination. J Phys Condens Matter. 2012;24:363201.
  • Kennehan ER, Doucette GS, Marshall AR, et al. Electron-phonon coupling and resonant relaxation from 1d and 1p states in PbS quantum dots. ACS Nano. 2018;12:6263.
  • Hartland GV. Coherent excitation of vibrational modes in metallic nanoparticles. Annu Rev Phys Chem. 2006;57:403–760.
  • Lüker S, Kuhn T, Reiter DE. Phonon impact on optical control schemes of quantum dots: role of quantum dot geometry and symmetry. Phys Rev B. 2017;96:245306.
  • Munch M, Wüst G, Kuhlmann AV, et al. Manipulation of the nuclear spin ensemble in a quantum dot with chirped magnetic resonance pulses. Nat Nanotech. 2014;9:671.
  • Nysteen A, Kaer P, Mørk J. Proposed quanching of phonon-induced processes in photoexcited quantum dots due to electron-hole asymmetries. Phys Rev Lett. 2013;110:087401.
  • Calarco T, Datta A, Fedichev P, et al. Spin-based all-optical quantum computation with quantum dots: understanding and suppressing decoherence. Phys Rev A. 2003;68:012310.
  • Vagov A, Croitoru M, Glässl M, et al. Real-time path integrals for quantum dots: quantum dissipative dynamics with superohmic environment coupling. Phys Rev B. 2011;83:094303.
  • Bellingham R, Kent A, Akimov A, et al. Acoustic phonon emission by optically excited carriers in the InAs/GaAs quantum dot system. Phys Status Solidi B. 2001;224:659.
  • Kent A, Akimov A, Cavill S, et al. Phonon emission by optically pumped indium arsenide quantum dots in gallium arsenide. Physica B. 2002;316–317:198.
  • Madsen KH, Kaer P, Kreiner-Møller A, et al. Measuring the effective phonon density of states of a quantum dot in cavity quantum electrodynamics. Phys Rev B. 2013;88:045316.
  • Mahan GD. Many-particle physics. New York: Kluwer; 2000.
  • Lax M. The Franck-Condon principle and its application to crystals. J Chem Phys. 1950;20:1752.
  • Huang K, Rhys A. Theory of light absorption and non-radiative transitions in f-centres. Proc R Soc London (A). 1950;204:406.
  • Roszak K, Machnikowski P. Complete disentanglement by partial pure dephasing. Phys Rev A. 2006;73:022313.
  • Axt VM, Herbst M, Kuhn T. Coherent control of phonon quantum beats. Superlattices Microstruct. 1999;26:117.
  • Vagov A, Axt VM, Kuhn T. Electron-phonon dynamics in optically excited quantum dots: exact solution for multiple ultrashort laser pulses. Phys Rev B. 2002;66:165312.
  • Axt VM, Kuhn T, Vagov A, et al. Phonon-induced pure dephasing in exciton-biexciton quantum dot systems driven by ultrafast laser pulse sequences. Phys Rev B. 2005;72:125309.
  • Reiter DE, Wigger D, Axt VM, et al. Generation and dynamics of phononic cat states after optical excitation of a quantum dot. Phys Rev B. 2011;84:195327.
  • Wigger D, Reiter DE, Axt VM, et al. Fluctuation properties of acoustic phonons generated by ultrafast optical excitation of a quantum dot. Phys Rev B. 2013;87:085301.
  • Vagov A, Axt VM, Kuhn T. Impact of pure dephasing on the nonlinear optical response of single quantum dots and dot ensembles. Phys Rev B. 2003;67:115338.
  • Krügel A, Vagov A, Axt VM, et al. Monitoring the buildup of the quantum dot polaron: pump-probe and four-wave mixing spectra from excitons and biexcitons in semiconductor quantum dots. Phys Rev B. 2007;76:195302.
  • Huneke J, Krügel A, Kuhn T, et al. Impact of strain waves traveling across a quantum dot on the optical response of the dot: distinction between strain waves of different origin. Phys Rev B. 2008;78:85316.
  • Chenu A, Shiau SY, Combescot M. Two-level system coupled to phonons: full analytical solution. Phys Rev B. 2019;99:014302.
  • Krügel A, Axt VM, Kuhn T. Back action of nonequilibrium phonons on the optically induced dynamics in semiconductor quantum dots. Phys Rev B. 2006;73:035302.
  • Richter M, Carmele A, Sitek A, et al. Few-photon model of the optical emission of semiconductor quantum dots. Phys Rev Lett. 2009;103:87407.
  • Vagov A, Croitoru MD, Axt VM, et al. Dynamics of quantum dots with strong electron phonon coupling: correlation expansion vs. path integrals. Phys Status Solidi B. 2011;248:839.
  • Lüker S, Gawarecki K, Reiter DE, et al. Influence of acoustic phonons on the optical control of quantum dots driven by adiabatic rapid passage. Phys Rev B. 2012;85:121302.
  • Wigger D, Lüker S, Reiter DE, et al. Energy transport and coherence properties of acoustic phonons generated by optical excitation of a quantum dot. J Phys Condens Matter. 2014;26:255802.
  • Reiter DE. Time-resolved pump-probe signals of a continuously driven quantum dot affected by phonons. Phys Rev B. 2017;95:125308.
  • Kubo R. Generalized cumulant expansion method. J Phys Soc Jpn. 1962;17:1100.
  • Breuer HP, Petruccione F. The theory of open quantum systems. Vol. 28. Oxford: Oxford University Press; 2002.
  • Carmichael H. Statitical methods in quantum optics 1 - Master Equation and Fokker-Planck equations. Berlin: Springer; 1999.
  • McCutcheon DPS, Nazir A. Quantum dot Rabi rotations beyond the weak exciton–phonon coupling regime. New J Phys. 2010;12:113042.
  • Roy C, Hughes S. Influence of electron–acoustic-phonon scattering on intensity power broadening in a coherently driven quantum-dot–cavity system. Phys Rev X. 2011;1:021009.
  • Kaer P, Nielsen TR, Lodahl P, et al. Microscopic theory of phonon-induced effects on semiconductor quantum dot decay dynamics in cavity QED. Phys Rev B. 2012;86:085302.
  • Roy C, Hughes S. Polaron master equation theory of the quantum-dot Mollow triplet in a semiconductor cavity-QED system. Phys Rev B. 2012;85:115309.
  • McCutcheon DPS, Nazir A. Model of the optical emission of a driven semiconductor quantum dot: phonon-enhanced coherent scattering and off-resonant sideband narrowing. Phys Rev Lett. 2013;110:217401.
  • Hughes S, Carmichael H. Phonon-mediated population inversion in a semiconductor quantum-dot cavity system. New J Phys. 2013;15:053039.
  • Karwat P, Machnikowski P. Decay and persistence of spatial coherence during phonon-assisted relaxation in double quantum dots. Phys Rev B. 2015;91:125428.
  • Roy-Choudhury K, Hughes S. Quantum theory of the emission spectrum from quantum dots coupled to structured photonic reservoirs and acoustic phonons. Phys Rev B. 2015;92:205406.
  • Manson R, Roy-Choudhury K, Hughes S. Polaron master equation theory of pulse-driven phonon-assisted population inversion and single-photon emission from quantum-dot excitons. Phys Rev B. 2016;93:155423.
  • Nazir A, McCutcheon DPS. Modelling exciton–phonon interactions in optically driven quantum dots. J Phys Condens Matter. 2016;28:103002.
  • Gustin C, Hughes S. Pulsed excitation dynamics in quantum-dot–cavity systems: limits to optimizing the fidelity of on-demand single-photon sources. Phys Rev B. 2018;98:045309.
  • Rozbicki E, Machnikowski P. Quantum kinetic theory of phonon-assisted excitation transfer in quantum dot molecules. Phys Rev Lett. 2008;100:27401.
  • Roszak K, Machnikowski P. Phonon-induced dephasing of singlet-triplet superpositions in double quantum dots without spin-orbit coupling. Phys Rev B. 2009;80:195315.
  • Roszak K, Machnikowski P. Phonon-induced pure dephasing of two-electron spin states in vertical quantum dot molecules. Acta Phys Pol A. 2009;116:877.
  • Bagheri Harouni M, Roknizadeh R, Naderi MH. Influence of phonons on exciton-photon interaction and photon statistics of a quantum dot. Phys Rev B. 2009;79:165304.
  • Gawarecki K, Lüker S, Reiter DE, et al. Dephasing in the adiabatic rapid passage in quantum dots: role of phonon-assisted biexciton generation. Phys Rev B. 2012;86:235301.
  • Kaer P, Mørk J. Decoherence in semiconductor cavity QED systems due to phonon couplings. Phys Rev B. 2014;90:035312.
  • Inoshita T, Sakaki H. Density of states and phonon-induced relaxation of electrons in semiconductor quantum dots. Phys Rev B. 1997;56:R4355.
  • Vasilevskiy MI, Anda EV, Makler SS. Electron-phonon interaction effects in semiconductor quantum dots: a nonperturabative approach. Phys Rev B. 2004;70:035318.
  • Wilner EY, Wang H, Thoss M, et al. Nonequilibrium quantum systems with electron-phonon interactions: transient dynamics and approach to steady state. Phys Rev B. 2014;89:205129.
  • Hornecker G, Auffèves A, Grange T. Influence of phonons on solid-state cavity-QED investigated using nonequilibrium Green’s functions. Phys Rev B. 2017;95:035404.
  • Kilina SV, Kilin DS, Prezhdo OV. Breaking the phonon bottleneck in PbSe and CdSe quantum dots: time-domain density functional theory of charge carrier relaxation. ACS Nano. 2009;3:93.
  • Makri N, Makarov DE. Tensor propagator for iterative quantum time evolution of reduced density matrices. I. Theory. J Chem Phys. 1995;102:4600.
  • Makri N, Makarov DE. Tensor propagator for iterative quantum time evolution of reduced density matrices. II. Numerical methodology. J Chem Phys. 1995;102:4611.
  • Liang XT. Non-Markovian dynamics and phonon decoherence of a double quantum dot charge qubit. Phys Rev B. 2005;72:245328.
  • Thorwart M, Eckel J, Mucciolo ER. Non-Markovian dynamics of double quantum dot charge qubits due to acoustic phonons. Phys Rev B. 2005;72:235320.
  • Vagov A, Croitoru MD, Axt VM, et al. High pulse area undamping of Rabi oscillations in quantum dots coupled to phonons. Phys Status Solidi B. 2006;243:2233.
  • Vagov A, Croitoru MD, Axt VM, et al. Nonmonotonic field dependence of damping and reappearance of Rabi oscillations in quantum dots. Phys Rev Lett. 2007;98:227403.
  • Glässl M, Vagov A, Lüker S, et al. Long-time dynamics and stationary nonequilibrium of an optically driven strongly confined quantum dot coupled to phonons. Phys Rev B. 2011;84:195311.
  • Glässl M, Croitoru MD, Vagov A, et al. Impact of dark superpositions on the relaxation dynamics of an optically driven phonon-coupled exciton-biexciton quantum-dot system. Phys Rev B. 2012;85:195306.
  • Glässl M, Axt VM. Polarization dependence of phonon influences in exciton-biexciton quantum dot systems. Phys Rev B. 2012;86:245306.
  • Vagov A, Glässl M, Croitoru M, et al. Competition between pure dephasing and photon losses in the dynamics of a dot-cavity system. Phys Rev B. 2014;90:075309.
  • Nahri DG, Mathkoor FHA, Ooi CHR. Real-time path-integral approach for dissipative quantum dot-cavity quantum electrodynamics: impure dephasing-induced effects. J Phys Condens Matter. 2016;29:055701.
  • Barth AM, Vagov A, Axt VM. Path-integral description of combined Hamiltonian and non-Hamiltonian dynamics in quantum dissipative systems. Phys Rev B. 2016;94:125439.
  • Strathearn A, Kirton P, Kilda D, et al. Efficient non-Markovian quantum dynamics using time-evolving matrix product operators. Nat Commun. 2018;9:3322.
  • Feynman RP. Space-time approach to non-relativistic quantum mechanics. Rev Mod Phys. 1948;20:367.
  • Feynman RP, Vernon F. The theory of a general quantum system interacting with a linear dissipative system. Ann Phys. 1963;24:118.
  • Cosacchi M, Cygorek M, Ungar F, et al. Path-integral approach for nonequilibrium multitime correlation functions of open quantum systems coupled to Markovian and non-Markovian environments. Phys Rev B. 2018;98:125302.
  • Guarnieri G, Smirne A, Vacchini B. Quantum regression theorem and non-markovianity of quantum dynamics. Phys Rev A. 2014;90:022110.
  • McCutcheon DPS. Optical signatures of non-Markovian behavior in open quantum systems. Phys Rev A. 2016;93:022119.
  • Lodahl P, Mahmoodian S, Stobbe S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev Mod Phys. 2015;87:347.
  • Favero I, Cassabois G, Ferreira R, et al. Acoustic phonon sidebands in the emission line of single InAs/GaAs quantum dots. Phys Rev B. 2003;68:233301.
  • Rol F, Founta S, Mariette H, et al. Probing exciton localization in nonpolar GaN/AlN quantum dots by single-dot optical spectroscopy. Phys Rev B. 2007;75:125306.
  • Stock E, Dachner M, Warming T, et al. Acoustic and optical phonon scattering in a single In(Ga)As quantum dot. Phys Rev B. 2011;83:041304.
  • Jakubczyk T, Delmonte V, Fischbach S, et al. Impact of phonons on dephasing of individual excitons in deterministic quantum dot microlenses. ACS Photonics. 2016;3:2461.
  • Grange T, Somaschi N, Antón C, et al. Reducing phonon-induced decoherence in solid-state single-photon sources with cavity quantum electrodynamics. Phys Rev Lett. 2017;118:253602.
  • Reitzenstein S, Forchel A. Quantum dot micropillars. J Phys D. 2010;43:033001.
  • Axt VM, Machnikowski P, Kuhn T. Reducing decoherence of the confined exciton state in a quantum dot by pulse-sequence control. Phys Rev B. 2005 Apr;71:155305.
  • Birkedal D, Leosson K, Hvam JM. Long lived coherence in self-assembled quantum dots. Phys Rev Lett. 2001;87:227401.
  • Bayer M, Forchel A. Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots. Phys Rev B. 2002;65:041308.
  • Muljarov EA, Zimmermann R. Exciton dephasing in quantum dots due to LO-phonon coupling: an exactly solvable model. Phys Rev Lett. 2007;98:187401.
  • Takagahara T. Theory of exciton dephasing in semiconductor quantum dots. Phys Rev B. 1999;60:2638.
  • Rudin S, Reinecke TL, Bayer M. Temperature dependence of optical linewidth in single InAs quantum dots. Phys Rev B. 2006;74:161305(R).
  • Favero I, Berthelot A, Cassabois G, et al. Temperature dependence of the zero-phonon linewidth in quantum dots: an effect of the fluctuating environment. Phys Rev B. 2007;75:073308.
  • Ortner G, Yakovlev DR, Bayer M, et al. Temperature dependence of the zero-phonon linewidth in InAsGaAs quantum dots. Phys Rev B. 2004;70:201301(R).
  • Machnikowski P. Change of decoherence scenario and appearance of localization due to reservoir anharmonicity. Phys Rev Lett. 2006;96:140405.
  • Machnikowski P. Pure dephasing of carriers in quantum dots due to anharmonicity-induced phonon scattering. Phys Status Solidi B. 2006;243:2247.
  • Ridley BK. Quantum processes in semiconductors. 5th edition, Oxford University Press, Oxford; 2013.
  • Borri P, Langbein W, Schneider S, et al. Ultralong dephasing time in InGaAs quantum dots. Phys Rev Lett. 2001;87:157401.
  • Borri P, Langbein W, Woggon U, et al. Exciton dephasing via phonon interactions in InAs quantum dots: dependence on quantum confinement. Phys Rev B. 2005;71:115328.
  • Mermillod Q, Wigger D, Delmonte V, et al. Dynamics of excitons in individual InAs quantum dots revealed in four-wave mixing spectroscopy. Optica. 2016;3:377.
  • Ulhaq A, Ates S, Weiler S, et al. Linewidth broadening and emission saturation of a resonantly excited quantum dot monitored via an off-resonant cavity mode. Phys Rev B. 2010;82:045307.
  • Ulrich SM, Ates S, Reitzenstein S, et al. Dephasing of triplet-sideband optical emission of a resonantly driven InAs/GaAs quantum dot inside a microcavity. Phys Rev Lett. 2011;106:247402.
  • Kabuss J, Carmele A, Richter M, et al. Microscopic equation-of-motion approach to the multiphonon assisted quantum emission of a semiconductor quantum dot. Phys Rev B. 2011;84:125324.
  • Ulhaq A, Weiler S, Roy C, et al. Detuning-dependent Mollow triplet of a coherently-driven single quantum dot. Opt Express. 2013;21:4382.
  • Wei YJ, He Y, He YM, et al. Temperature-dependent Mollow triplet spectra from a single quantum dot: Rabi frequency renormalization and sideband linewidth insensitivity. Phys Rev Lett. 2014;113:097401.
  • Morreau A, Muljarov E. Phonon-induced dephasing in quantum dot-cavity QED. arXiv preprint. 2018. arXiv:180710977.
  • Wei YJ, He YM, Chen MC, et al. Deterministic and robust generation of single photons from a single quantum dot with 99.5% indistinguishability using adiabatic rapid passage. Nano Lett. 2014;14:6515.
  • Carmele A, Reitzenstein S. Non-markovian features in semiconductor quantum optics: quantifying the role of phonons in experiment and theory. Nanophotonics. 2019;8:655.
  • Kamada H, Gotoh H, Temmyo J, et al. Exciton Rabi oscillation in a single quantum dot. Phys Rev Lett. 2001;87:246401.
  • Stievater TH, Li X, Steel DG, et al. Rabi oscillations of excitons in single quantum dots. Phys Rev Lett. 2001;87:133603.
  • Borri P, Langbein W, Schneider S, et al. Rabi oscillations in the excitonic ground-state transition of InGaAs quantum dots. Phys Rev B. 2002;66:081306.
  • Htoon H, Takagahara T, Kulik D, et al. Interplay of Rabi oscillations and quantum interference in semiconductor quantum dots. Phys Rev Lett. 2002;88:087401.
  • Zrenner A, Beham E, Stufler S, et al. Coherent properties of a two-level system based on a quantum-dot photodiode. Nature. 2002;418:612.
  • Unold T, Mueller K, Lienau C, et al. Optical control of excitons in a pair of quantum dots coupled by the dipole-dipole interaction. Phys Rev Lett. 2005;94:137404.
  • Danckwerts J, Ahn K, Förstner J, et al. Theory of ultrafast nonlinear optics of Coulomb-coupled semiconductor quantum dots: Rabi oscillations and pump-probe spectra. Phys Rev B. 2006;73:165318.
  • Stufler S, Machnikowski P, Ester P, et al. Two-photon Rabi oscillations in a single Inx Ga1-x As/GaAs quantum dot. Phys Rev B. 2006;73:125304.
  • Larson J, Moya-Cessa H. Rabi oscillations in a quantum dot-cavity system coupled to a nonzero temperature phonon bath. Phys Scr. 2008;77:065704.
  • Schaibley JR, Burgers AP, McCracken GA, et al. Direct detection of time-resolved Rabi oscillations in a single quantum dot via resonance fluorescence. Phys Rev B. 2013;87:115311.
  • Barth AM, Lüker S, Vagov A, et al. Fast and selective phonon-assisted state preparation of a quantum dot by adiabatic undressing. Phys Rev B. 2016;94:045306.
  • Allen L, Eberly JH. Optical resonance and two-level atoms. Vol. 28. New York: John Wiley and Sons; 1975.
  • Machnikowski P, Axt VM, Kuhn T. Quantum-information encoding in dressed qubits. Phys Rev A. 2007;75:052330.
  • Krummheuer B, Axt VM, Kuhn T. Coupled polarization and acoustic-phonon dynamics after optical excitation of quantum dots near surfaces. Phys Rev B. 2005;72:245336.
  • Kaldewey T, Lüker S, Kuhlmann AV, et al. Demonstrating the decoupling regime of the electron-phonon interaction in a quantum dot using chirped optical excitation. Phys Rev B. 2017;95:241306.
  • Schmidgall ER, Eastham PR, Phillips RT. Population inversion in quantum dot ensembles via adiabatic rapid passage. Phys Rev B. 2010;81:195306.
  • Simon CM, Belhadj T, Chatel B, et al. Robust quantum dot exciton generation via adiabatic passage with frequency-swept optical pulses. Phys Rev Lett. 2011;106:166801.
  • Wu Y, Piper IM, Ediger M, et al. Population inversion in a single InGaAs quantum dot using the method of adiabatic rapid passage. Phys Rev Lett. 2011;106:067401.
  • Debnath A, Meier C, Chatel B, et al. Chirped laser excitation of quantum dot excitons coupled to a phonon bath. Phys Rev B. 2012;86:161304.
  • Eastham PR, Spracklen AO, Keeling J. Lindblad theory of dynamical decoherence of quantum-dot excitons. Phys Rev B. 2013;87:195306.
  • Mathew R, Dilcher E, Gamouras A, et al. Subpicosecond adiabatic rapid passage on a single semiconductor quantum dot: phonon-mediated dephasing in the strong-driving regime. Phys Rev B. 2014;90:035316.
  • Glässl M, Barth AM, Gawarecki K, et al. Biexciton state preparation in a quantum dot via adiabatic rapid passage: comparison between two control protocols and impact of phonon-induced dephasing. Phys Rev B. 2013;87:085303.
  • Debnath A, Meier C, Chatel B, et al. High-fidelity biexciton generation in quantum dots by chirped laser pulses. Phys Rev B. 2013;88:201305.
  • Kaldewey T, Lüker S, Kuhlmann AV, et al. Coherent and robust high-fidelity generation of a biexciton in a quantum dot with rapid adiabatic passage. Phys Rev B. 2017;95:161302.
  • Reiter DE, Lüker S, Gawarecki K, et al. Phonon effects on population inversion in quantum dots: resonant, detuned and frequency-swept excitations. Acta Phys Pol A. 2012;122:1065.
  • Vitanov NV, Halfmann T, Shore BW, et al. Laser-induced population transfer by adiabatic passage techniques. Annu Rev Phys Chem. 2001;52(1):763–809. PMID: 11326080.
  • Reindl M, Jons KD, Huber D, et al. Phonon-assisted two-photon interference from remote quantum emitters. Nano Lett. 2017;17:4090.
  • Liu F, Martins LMP, Brash AJ, et al. Ultrafast depopulation of a quantum dot by LA-phonon-assisted stimulated emission. Phys Rev B. 2016;93:161407.
  • Brash AJ, Martins LMPP, Barth AM, et al. Dynamic vibronic coupling in InGaAs quantum dots. J Opt Soc Am B. 2016;33:C115.
  • Zeilinger A. Light for the quantum. entangled photons and their applications: a very personal perspective. Phys Scr. 2017;92:072501.
  • Stevenson RM, Thompson RM, Shields AJ, et al. Quantum dots as a photon source for passive quantum key encoding. Phys Rev B. 2002;66:081302.
  • Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography. Rev Mod Phys. 2002;74:145.
  • Kiraz A, Atatüre M, Imamoğlu A. Quantum-dot single-photon sources: prospects for applications in linear optics quantum-information processing. Phys Rev A. 2004;69:032305.
  • Pan JW, Chen ZB, Lu CY, et al. Multiphoton entanglement and interferometry. Rev Mod Phys. 2012;84:777.
  • Kuhn SC, Knorr A, Reitzenstein S, et al. Cavity assisted emission of single, paired and heralded photons from a single quantum dot device. Opt Express. 2016;24:25446.
  • O’Brian JL, Furusawa A, Vučković J. Photonic quantum technologies. Nat Photon. 2009;3:687.
  • Reithmaier JP, Sek G, Löffler A, et al. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature. 2004;432:197.
  • Yoshie T, Scherer A, Hendrickson J, et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature. 2004;432:200.
  • Khitrova G, Gibbs HM, Kira M, et al. Vacuum Rabi splitting in semiconductors. Nat Phys. 2006;2:81.
  • Glässl M, Sörgel L, Vagov A, et al. Interaction of a quantum-dot cavity system with acoustic phonons: stronger light-matter coupling can reduce the visibility of strong coupling effects. Phys Rev B. 2012;86:035319.
  • Carmele A, Knorr A, Milde F. Stabilization of photon collapse and revival dynamics by a non-Markovian phonon bath. New J Phys. 2013;15:105024.
  • Wilson-Rae I, Imamoğlu A. Quantum dot cavity-QED in the presence of strong electron-phonon interactions. Phys Rev B. 2002;65:235311.
  • Laucht A, Hauke N, Villas-Bôas JM, et al. Dephasing of exciton polaritons in photoexcited ingaas quantum dots in gaas nanocavities. Phys Rev Lett. 2009;103:087405.
  • Milde F, Knorr A, Hughes S. Role of electron-phonon scattering on the vacuum Rabi splitting of a single-quantum dot and a photonic crystal nanocavity. Phys Rev B. 2008;78:035330.
  • Hopfmann C, Musiał A, Strauß M, et al. Compensation of phonon-induced renormalization of vacuum Rabi splitting in large quantum dots: towards temperature-stable strong coupling in the solid state with quantum dot-micropillars. Phys Rev B. 2015;92:245403.
  • Eberly JH, Narozhny NB, Sanchez-Mondragon JJ. Periodic spontaneous collapse and revival in a simple quantum model. Phys Rev Lett. 1980;44:1323.
  • Rempe G, Walther H, Klein N. Observation of quantum collapse and revival in a one-atom maser. Phys Rev Lett. 1987;58:353.
  • Hennessy K, Badolato A, Winger M, et al. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature. 2007;445:896.
  • Press D, Götzinger S, Reitzenstein S, et al. Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime. Phys Rev Lett. 2007;98:117402.
  • Kaniber M, Laucht A, Neumann A, et al. Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities. Phys Rev B. 2008;77:161303.
  • Laucht A, Hofbauer F, Hauke N, et al. Electrical control of spontaneous emission and strong coupling for a single quantum dot. New J Phys. 2009;11:023034.
  • Suffczyński J, Dousse A, Gauthron K, et al. Origin of the optical emission within the cavity mode of coupled quantum dot-cavity systems. Phys Rev Lett. 2009;103:027401.
  • Englund D, Majumdar A, Faraon A, et al. Resonant excitation of a quantum dot strongly coupled to a photonic crystal nanocavity. Phys Rev Lett. 2010;104:073904.
  • Dalacu D, Mnaymneh K, Sazonova V, et al. Deterministic emitter-cavity coupling using a single-site controlled quantum dot. Phys Rev B. 2010;82:033301.
  • Laucht A, Kaniber M, Mohtashami A, et al. Temporal monitoring of nonresonant feeding of semiconductor nanocavity modes by quantum dot multiexciton transitions. Phys Rev B. 2010;81:241302.
  • Winger M, Volz T, Tarel G, et al. Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot–cavity system. Phys Rev Lett. 2009;103:207403.
  • Santori C, Pelton M, Solomon G, et al. Triggered single photons from a quantum dot. Phys Rev Lett. 2001;86:1502.
  • Santori C, Fattal D, Vučković J, et al. Indistinguishable photons from a single-photon device. Nature. 2002;419:594.
  • He YM, He Y, Wei YJ, et al. On-demand semiconductor single-photon source with near-unity indistinguishability. Nat Nanotech. 2013;8:213.
  • Somaschi N, Giesz V, De Santis L, et al. Near-optimal single-photon sources in the solid state. Nat Photon. 2016;10:340.
  • Schweickert L, Jöns KD, Zeuner KD, et al. On-demand generation of background-free single photons from a solid-state source. Appl Phys Lett. 2018;112:093106.
  • Schlehahn A, Fischbach S, Schmidt R, et al. A stand-alone fiber-coupled single-photon source. Sci Rep. 2018;8:1340.
  • Hanbury Brown R, Twiss RQ. A test of a new type of stellar interferometer on Sirius. Nature. 1956;178:1046.
  • Kaer P, Gregersen N, Mork J. The role of phonon scattering in the indistinguishability of photons emitted from semiconductor cavity QED systems. New J Phys. 2013;15:035027.
  • Hong CK, Ou ZY, Mandel L. Measurement of subpicosecond time intervals between two photons by interference. Phys Rev Lett. 1987;59:2044.
  • Thoma A, Schnauber P, Gschrey M, et al. Exploring dephasing of a solid-state quantum emitter via time-and temperature-dependent Hong-Ou-Mandel experiments. Phys Rev Lett. 2016;116:033601.
  • Kaer P, Lodahl P, Jauho AP, et al. Microscopic theory of indistinguishable single-photon emission from a quantum dot coupled to a cavity: the role of non-Markovian phonon-induced decoherence. Phys Rev B. 2013;87:081308.
  • Iles-Smith J, McCutcheon DPS, Nazir A, et al. Phonon scattering inhibits simultaneous near-unity efficiency and indistinguishability in semiconductor single-photon sources. Nat Photon. 2017;11:521.
  • Portalupi SL, Hornecker G, Giesz V, et al. Bright phonon-tuned single-photon source. Nano Lett. 2015;15:6290.
  • Hanschke L, Fischer KA, Appel S, et al. Quantum dot single-photon sources with ultra-low multi-photon probability. Npj Quantum Inf. 2018;4:43.
  • Stevenson RM, Young RJ, Atkinson P, et al. A semiconductor source of triggered entangled photon pairs. Nature. 2006;439:179.
  • Hafenbrak R, Ulrich SM, Michler P, et al. Triggered polarization-entangled photon pairs from a single quantum dot up to 30K. New J Phys. 2007;9:315.
  • Dousse A, Suffczyński J, Beveratos A, et al. Ultrabright source of entangled photon pairs. Nature. 2010;466:217.
  • Del Valle E. Distilling one, two and entangled pairs of photons from a quantum dot with cavity QED effects and spectral filtering. New J Phys. 2013;15:025019.
  • Müller M, Bounouar S, Jöns KD, et al. On-demand generation of indistinguishable polarization-entangled photon pairs. Nat Photon. 2014;8:224.
  • Sánchez Muñoz C, Laussy FP, Tejedor C, et al. Enhanced two-photon emission from a dressed biexciton. New J Phys. 2015;17:123021.
  • Carmele A, Milde F, Dachner MR, et al. Formation dynamics of an entangled photon pair: a temperature-dependent analysis. Phys Rev B. 2010;81:195319.
  • Carmele A, Knorr A. Analytical solution of the quantum-state tomography of the biexciton cascade in semiconductor quantum dots: pure dephasing does not affect entanglement. Phys Rev B. 2011;84:075328.
  • Cygorek M, Ungar F, Seidelmann T, et al. Comparison of different concurrences characterizing photon pairs generated in the biexciton cascade in quantum dots coupled to microcavities. Phys Rev B. 2018;98:045303.
  • Young RJ, Stevenson RM, Atkinson P, et al. Improved fidelity of triggered entangled photons from single quantum dots. New J Phys. 2006;8:29.
  • Stevenson RM, Young RJ, See P, et al. Magnetic-field-induced reduction of the exciton polarization splitting in InAs quantum dots. Phys Rev B. 2006;73:033306.
  • Zhang J, Wildmann JS, Ding F, et al. High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots. Nat Commun. 2015;6:10067.
  • Schumacher S, Förstner J, Zrenner A, et al. Cavity-assisted emission of polarization-entangled photons from biexcitons in quantum dots with fine-structure splitting. Opt Express. 2012;20:5335.
  • Harouni MB. Phonon-induced effects on exciton dynamics and photon emission from a semiconductor quantum dot microcavity: phonon coherent state representation. Laser Phys. 2014;24:045201.
  • Seidelmann T, Ungar F, Cygorek M, et al. From strong to weak temperature dependence of the two-photon entanglement resulting from the biexciton cascade inside a cavity. Phys Rev B. 2019;99:245301.
  • Seidelmann T, Ungar F, Barth AM, et al. Phonon-induced enhancement of photon entanglement in quantum dot-cavity systems. 2019. arXiv:190204933.
  • Hopfmann C, Carmele A, Musiał A, et al. Transition from Jaynes-Cummings to Autler-Townes ladder in a quantum dot–microcavity system. Phys Rev B. 2017;95:035302.
  • Schmidt M, von Helversen M, López M, et al. Photon-number-resolving transition-edge sensors for the metrology of quantum light sources. J Low Temp Phys. 2018;193(5):1243.
  • Klaas M, Schlottmann E, Flayac H, et al. Photon-number-resolved measurement of an exciton-polariton condensate. Phys Rev Lett. 2018;121:047401.
  • Schlottmann E, von Helversen M, Leymann HAM, et al. Exploring the photon-number distribution of bimodal microlasers with a transition edge sensor. Phys Rev Appl. 2018;9:064030.
  • van Helversen M, Böhm J, Schmidt M, et al. Quantum metrology of solid-state single-photon sources using photon-number-resolving detectors. New J Phys. 2019;21:035007.
  • Lanzillotti-Kimura N, Fainstein A, Balseiro C, et al. Phonon engineering with acoustic nanocavities: theoretical considerations on phonon molecules, band structures, and acoustic Bloch oscillations. Phys Rev B. 2007;75:024301.
  • Kabuss J, Carmele A, Brandes T, et al. Optically driven quantum dots as source of coherent cavity phonons: a proposal for a phonon laser scheme. Phys Rev Lett. 2012;109:054301.
  • Esmann M, Lamberti FR, Senellart P, et al. Topological nanophononic states by band inversion. Phys Rev B. 2018;97:155422.
  • Kerfoot ML, Govorov AO, Czarnocki C, et al. Optophononics with coupled quantum dots. Nat Commun. 2014;5:3299.
  • Volz S, Ordonez-Miranda J, Shchepetov A, et al. Nanophononics: state of the art and perspectives. Eur Phys J B. 2016;89:1.
  • Cosacchi M, Ungar F, Cygorek M, et al. Emission-frequency separated high quality single-photon sources enabled by phonons. Phys Rev Lett. 2019;123:017403.
  • Brüggemann C, Akimov AV, Scherbakov AV, et al. Laser mode feeding by shaking quantum dots in a planar microcavity. Nat Photon. 2011;6:30.
  • Czerniuk T, Wigger D, Akimov AV, et al. Picosecond control of quantum dot laser emission by coherent phonons. Phys Rev Lett. 2017;118:133901.
  • Wigger D, Czerniuk T, Reiter DE, et al. Systematic study of the influence of coherent phonon wave packets on the lasing properties of a quantum dot ensemble. New J Phys. 2017;19:073001.
  • Fons R, Osterkryger AD, Stepanov P, et al. All-optical mapping of the position of quantum dots embedded in a nanowire antenna. Nano Lett. 2018;18:6434.
  • Kataoka M, Schneble RJ, Thorn AL, et al. Single-electron population and depopulation of an isolated quantum dot using a surface-acoustic-wave pulse. Phys Rev Lett. 2007;98:046801.
  • Gell JR, Ward MB, Young RJ, et al. Modulation of single quantum dot energy levels by a surface-acoustic-wave. Appl Phys Lett. 2008;93:081115.
  • Blattmann R, Krenner HJ, Kohler S, et al. Entanglement creation in a quantum-dot–nanocavity system by Fourier-synthesized acoustic pulses. Phys Rev A. 2014;89:012327.
  • Weiß M, Hörner AL, Zallo E, et al. Multiharmonic frequency-chirped transducers for surface-acoustic-wave optomechanics. Phys Rev Appl. 2018;9:014004.