4,995
Views
6
CrossRef citations to date
0
Altmetric
Review

Rare-earth ion doped Al2O3 for active integrated photonics

, , , , , & show all
Article: 1833753 | Received 21 Jul 2020, Accepted 03 Oct 2020, Published online: 14 Dec 2020

References

  • Dobrovinskaya ER, Lytvynov LA, Pishchik V. Sapphire material, manufacturing, applications. Springer; 2009.
  • West GN, Loh W, Kharas D, et al. “Low-loss integrated photonics for the blue and ultraviolet regime,#x201D;. APL Photonics. 2019;4:026101.
  • de Goede M, Chang L, Mu J, et al. Al2O3: Yb3+ integrated microdisk laser label-free biosensor. Opt Lett. 2019;44:5937–30.
  • de Goede M, Dijkstra M, Obregón R, et al. Al2O3 microring resonators for the detection of a cancer biomarker in undiluted urine. Opt Express. 2019;27:18508.
  • Bernhardi EH, Lu Q, Van Wolferen HAGM, et al. Monolithic distributed Bragg reflector cavities in Al2O3 with quality factors exceeding 106. Photonics Nanostructures Fundam Appl. 2011;9:225–234.
  • Bradley JDB, Ay F, Wörhoff K, et al. Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching. Appl Phys B. 2007;89:311–318.
  • Vázquez-Córdova SA, Dijkstra M, Bernhardi EH, et al. Erbium-doped spiral amplifiers with 20 dB of net gain on silicon. Opt Express. 2014;22:25993.
  • Li N, Magden ES, Su Z, et al. Broadband 2-µm emission on silicon chips: monolithically integrated Holmium lasers. Opt Express. 2018;26:2220.
  • Worhoff K, Bradley JDB, Ay F, et al. Reliable low-cost fabrication of low-loss Al2O3: Er3+ waveguides with 5.4-dB optical gain. IEEE J Quantum Electron. 2009;45:454–461.
  • Purnawirman NL, Salih Magden E, Singh G, et al. Wavelength division multiplexed light source monolithically integrated on a silicon photonics platform. Opt Lett. 2017;42:1772–1775.
  • Demirtas M, Odaci C, Perkgoz NK, et al. Low loss atomic layer deposited Al2O3 waveguides for applications in on-chip optical amplifiers. IEEE J Sel Top Quantum Electron. 2018;24:1–8.
  • Hendriks WAPM, et al. Low loss aluminium oxide with high refractive index. Proc ECIO. 2020.
  • Bradley JDB, Hosseini ES, Su Z, et al. Monolithic erbium- and ytterbium-doped microring lasers on silicon chips. Opt Express. 2014;22:12226–12237.
  • Su Z, Li N, Frankis HC, et al. High-Q-factor Al2O3 micro-trench cavities integrated with silicon nitride waveguides on silicon. Opt Express. 2018;26:11161–11170.
  • Bradley JDB, Pollnau M. Erbium-doped integrated waveguide amplifiers and lasers. Laser Photon Rev. 2011;5:368–403.
  • Kik PG, Polman A. Erbium-doped optical-waveguide amplifiers on silicon. MRS Bull. 1998;23:48–54.
  • Lallier E. Rare-earth-doped glass and LiNbO3 waveguide lasers and optical amplifiers. Appl Opt. 1992;31:5276–5282.
  • Blaize S, Bastard L, Cassagnètes C, et al. Multiwavelengths DFB waveguide laser arrays in Yb–Er codoped phosphate glass substrate. IEEE Photonics Technol Lett. 2003;15:516–518.
  • Bastard L, Blaize S, Broquin JE. Glass integrated optics ultranarrow linewidth distributed feedback laser matrix for dense wavelength division multiplexing applications. Opt Eng. 2003;42:2800–2804.
  • Yang J, van Dalfsen K, Wörhoff K, et al. High-gain Al2O3: Nd3+channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm. Appl Phys B. 2010;101:119–127.
  • Bernhardi EH, Van Wolferen HAGM, Wörhoff K, et al. Highly efficient, low-threshold monolithic distributed-Bragg-reflector channel waveguide laser in Al2O3: Yb3+. Opt Lett. 2011;36:603–605.
  • Bernhardi EH, Khan MRH, Roeloffzen CGH, et al. Photonic generation of stable microwave signals from a dual-wavelength Al2O3: Yb3+distributed-feedback waveguide laser. Opt Lett. 2012;37:181.
  • van den Hoven GN, Snoeks E, Polman A, et al. Photoluminescence characterization of Er-implanted Al2O3 films. Appl Phys Lett. 1993;62:3065–3067.
  • van den Hoven GN, van der Elsken JA, Polman A, et al. Absorption and emission cross sections of Er3+ in Al2O3 waveguides. Appl Opt. 1997;36:3338–3441.
  • Van Den Hoven GN, Koper RJIM, Polman A, et al. Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon. Appl Phys Lett. 1996 Apr;68:1886–1888.
  • Musa S, van Weerden HJ, Yau TH, et al. Characteristics of Er-doped Al2O3 thin films deposited by reactive co-sputtering. IEEE J Quantum Electron. 2000;36:1089–1097.
  • Rönn J, Zhang W, Autere A, et al. Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides. Nat Commun. 2019;10:432.
  • Demırtaş M, Odaci C, Perkgöz NK, et al. Control of optical amplification process with extremely low background loss in Er: al2O3Waveguides. IEEE Photonics Conference (IPC). 2017;561–562.
  • Bradley JDB, Stoffer R, Bakker A, et al. Integrated Al2O3:Er3+zero-loss optical amplifier and power splitter with 40-nm bandwidth. IEEE Photonics Technol Lett. 2010;22:278–280.
  • Bradley JD, Stoffer R, Agazzi L, et al. Integrated Al2O3: Er3+ ring lasers on silicon with wide wavelength selectivity. Opt Lett. 2010;35:73–75.
  • Bernhardi EH, van Wolferen HAGM, Agazzi L, et al. Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3: Er3+ on silicon. Opt Lett. 2010;35:2394–2396.
  • Pollnau M. Rare-earth-ion-doped channel waveguide lasers on silicon. 21 (2015).
  • Purnawirman JS, Adam TN, Coolbaugh D, et al. C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities. Opt Lett. 2013;38:1760–1762.
  • Hosseini ES, Bradley JDB, Sun J, et al. CMOS-compatible 75 mW erbium-doped distributed feedback laser. Opt Lett. 2014;39:3106.
  • Singh G, Purnawirman JDB, Bradley NL, et al. Resonant pumped erbium-doped waveguide lasers using distributed Bragg reflector cavities. Opt Lett. 2016;41:1189–1192.
  • Purnawirman NL, Magden ES, Singh G, et al. Ultra-narrow-linewidth Al2O3: Er3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform. Opt Express. 2017;25:13705.
  • Salih Magden E, Li N, Purnawirman JDB, et al. Monolithically-integrated distributed feedback laser compatible with CMOS processing. Opt Express. 2017;25:18058–18065.
  • Purnawirman NL, Singh G, Magden ES, et al. Reliable integrated photonic light sources using curved Al2O3: Er3+ distributed feedback lasers. IEEE Photonics J. 2017;9:1–9.
  • Li N, Vermeulen D, Su Z, et al. Monolithically integrated erbium-doped tunable laser on a CMOS-compatible silicon photonics platform. Opt Express. 2018;26:16200.
  • Belt M, Huffman T, Davenport ML, et al. Arrayed narrow linewidth erbium-doped waveguide-distributed feedback lasers on an ultra-low-loss silicon-nitride platform. Opt Lett. 2013;38:4825.
  • Belt M, Blumenthal DJ. Erbium-doped waveguide DBR and DFB laser arrays integrated within an ultra-low-loss Si3N4 platform. Opt Express. 2014;22:10655.
  • Pintus P, Faralli S, Di Pasquale F. Integrated 2.8 μm laser source in Al2O3: Er3+ slot waveguide on SOI. J Lightwave Technol. 2011;29:1206–1212.
  • Rönn J, Karvonen L, Kauppinen C, et al. Atomic layer engineering of Er-ion distribution in highly doped Er: Al2O3 for photoluminescence enhancement. ACS Photonics. 2016;3:2040–2048.
  • Su Z, Li N, Salih Magden E, et al. Ultra-compact and low-threshold thulium microcavity laser monolithically integrated on silicon. Opt Lett. 2016;41:5708.
  • Li N, Purnawirman ZS, Salih Magden E, et al. High-power thulium lasers on a silicon photonics platform. Opt Lett. 2017;42:1181.
  • Smit MK, Acket GA, van der Laan CJ. Al2O3 films for integrated optics. Thin Solid Films. 1986;138:171–181.
  • Emmerik CI, Dijkstra M, de Goede M, et al. Single-layer active-passive Al2O3 photonic integration platform. Opt Mater Express. 2018;8:3049–3054.
  • Agazzi L, Bradley JDB, Dijkstra M, et al. Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides. Opt Express. 2010;18:27703.
  • Jarschel PF, Souza MCMM, Merlo RB, et al. Loss compensation in microring-based Si photonics devices via Er3+ doped claddings. IEEE Photon J. 2018;10:1–12.
  • Jarschel PF, Frateschi NC. Resonant amplification via Er-doped clad Si photonic molecules: towards compact low-loss/high-Q Si photonic devices. Solid State Electron. 2019;155:144–149.
  • Theurer M, Moehrle M, Sigmund A, et al. Flip-Chip Integration of InP and SiN. IEEE Photon Technol Lett. 2019;31:273–276.
  • Ishizaka T, Kurokawa Y. Optical properties of rare-earth ion (Gd3+, Ho3+, Pr3+, Sm3+, Dy3+ and Tm3+) -doped alumina films prepared by the sol–gel method. J Lumin. 2000;92:57–63.
  • Pillonnet-Minardi A, Marty O, Bovier C, et al. Optical and structural analysis of Eu3+-doped alumina planar waveguides elaborated by the sol-gel process. Opt Mater. 2001;16:9–13.
  • Ishizaka T, Nozaki R, Kurokawa Y. Luminescence properties of Tb3+ and Eu3+-doped alumina films prepared by sol-gel method under various conditions and sensitized luminescence. J Phys Chem Solids. 2002;63:613–617.
  • Wang XJ, Lei MK. Preparation and photoluminescence of Er3+-doped Al2O3 films by sol-gel method. Thin Solid Films. 2005;476:41–45.
  • Zhu ZH, Sha MJ, Lei MK. Controllable formation of Er3+- Yb3+ codoped Al2O3 films by the non-aqueous sol-gel method. Thin Solid Films. 2008;516:5075–5078.
  • Hu B, Yao M, Xiao R, et al. Optical properties of amorphous Al2O3 thin films prepared by a sol-gel process. Ceram Int. 2014;40:14133–14139.
  • Koh W, Ku S-J, Kim Y. Chemical vapor deposition of Al2O3 films using highly volatile single sources. Thin Solid Films. 1997;304:222–234.
  • Deschanvres JL, Meffre W, Joubert JC, et al. Rare-earth doped alumina thin films deposited by liquid source CVD processes. J Alloy Compd. 1998;275-277:742–745.
  • Jiménez de Castro M, Serna R, Chaos JA, et al. Influence of defects on the photoluminescence of pulsed-laser deposited Er-doped amorphous Al2O3 films. Nucl Instrum Method B. 2000;166-167:793–797.
  • Serna R, Jiménez de Castro M, Chaos JA, et al. Photoluminescence performance of pulsed laser deposited thin films with large erbium concentrations. J Appl Phys. 2001;90:5120.
  • Suárez-García A, Gonzalo J, Afonso CN. Low-loss Al2O3 waveguides produced by pulsed laser deposition at room temperature. Appl Phys A. 2003;77:779–783.
  • Serna R, Suárez-García A, Jiménez de Castro M, et al. Improving the photoluminescence of thin films by nanostructuring the rare-earth ion distribution. Appl Surf Sci. 2005;247:8–17.
  • Jiménez de Castro M, Suárez-García A, Serna R, et al. Optical activation of Er3+ in Al2O3 during pulsed laser deposition. Opt Mater. 2007;29:539–542.
  • Serna R, Nunez-Sanchez S, Xu F, et al. Enhanced photoluminescence of rare-earth doped films prepared by off-axis pulsed laser deposition. Appl Surf Sci. 2011;257:5204–5207.
  • Aslan MM, Webster NA, Byard CL, et al. Low-loss optical waveguides for the near ultra-violet and visible spectral regions with Al2O3 thin films from atomic layer deposition. Thin Solid Films. 2010;518:4935–4940.
  • Wickberg A, Keininger C, Sürgers C, et al. Second harmonic generation from ZnO/ Al2O3 nanolaminate optical metamaterials grown by atomic-layer deposition. Adv Opt Mater. 2016;4:1203–1208.
  • Puurunen RL. Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process. J Appl Phys. 2005;97:121301.
  • George SM. Atomic Layer Deposition: an Overview. Chem Rev. 2010;110:111–131.
  • López J, Borbón-Nuñez HA, Lizarraga-Medina EG, et al. Al2O3-Y2O3 ultrathin multilayer stacks grown by atomic layer deposition as perspective for optical waveguides applications. Opt Mater. 2017;72:788–794.
  • Demirtaş M, Özden A, Açikbaş E, et al. Extensive mode mapping and novel polarization filter design for ALD grown Al2O3 ridge waveguides. Opt Quantum Electron. 2016;48:357.
  • Özden A, Demirtaş M, Ay F. Polarization insensitive single mode Al2O3 rib waveguide design for applications in active and passive optical waveguides. J Eur Opt Soc Rapid Publ. 2015;10:15005.
  • Demirtaş M, Ay F. High-gain Er3+: al2O3 on-chip waveguide amplifiers. IEEE J. Selec Top Quant Electron. 2020;26:1–8.
  • Worhoff K, Ay F, Pollnau M. Optimization of low-loss Al2O3 waveguide fabrication for application in active integrated optical devices. ECS Trans. 2006;3:17–26.
  • van Emmerik CI, Hendriks WAPM, Stok MM, et al. Relative oxidation state of the target as guideline for depositing optical quality RF reactive magnetron sputtered Al2O3 layers. Opt Mater Express. 2020;10:1451–1462.
  • Notaros J, V. Li N, Poulton CV, V. Poulton C, Poulton CV, et al. CMOS-compatible optical phased array powered by a monolithically-integrated erbium laser. J Lightwave Technol. 2019;37:5982–5987.
  • Mu J, Dijkstra M, Yong Y-S,et al. Monolithic integration of Al2O3 and Si3N4 toward double-layer active-passive platform. IEEE J Selec Top Quant Electron. 2019;25:8200911.
  • Mu J, Dijkstra M, García-Blanco SM. Resonant coupling for active-passive monolithic integration of Al2O3 and Si3N4. IEEE Photonics Technol Lett. 2019;31:771–774.
  • Mu J, Dijkstra M, García-Blanco SM, “Monolithic integration of Al2O3: Er3+ amplifiers in Si3N4 technology,” in 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, Munich, OSA Technical Digest (Optical Society of America, 2019), paper ca_p_38.
  • Mu J, Dijkstra M, García-Blanco SM, “Monolithically integrated microring lasers in silicon nitride photonics,” in Proc. Annual Symp. IEEE Benelux Photonics Society, Amsterdam (2019).
  • Yang J, Lamprecht T, Wörhoff K, et al. Integrated Optical Backplane Amplifier. IEEE J. Selec. Top. Quant. Electron. Integrated optical backplane amplifier. 2011;17:609–616.
  • Chang L, de Goede M, Dijkstra M, et al. Performance parameter decoupled high efficiency micro ring laser cavity for biosensing in 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, Munich, OSA Technical Digest (Optical Society of America, 2019), ch_5_4.
  • Li N, Singh G, Magden ES, et al. Reliable integrated photonic light sources using curved Al2O3 Er3+ distributed feedback lasers. IEEE Photonics J. 2017;9:1–9.
  • Purnawirman, Li N, Magden ES, et al. Ultra-narrow-linewidth Al2O3: er3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform. Opt Express. 2017;25:13705–13713.
  • Hermans A, Van Daele M, Dendooven J, et al. Integrated silicon nitride electro-optic modulators with atomic layer deposited overlays. Opt Lett. 2019;44:1112–1115.
  • Wickberg A, Kieninger C, Sürgers C, et al. Second‐harmonic generation from ZnO/ Al2O3 nanolaminate optical metamaterials grown by atomic‐layer deposition. Adv Opt Mater. 2016;4:1203.
  • Berg S, Nyberg T. Fundamental understanding and modeling of reactive sputtering processes. Thin Solid Films. 2005;476:215–230.
  • Depla D, Mahieu S, De Gryse R. Magnetron sputter deposition: linking discharge voltage with target properties. Thin Solid Films. 2009;517:2825–2839.
  • Mahieu S, Ghekiere P, Depla D, et al. Biaxial alignment in sputter deposited thin films. Thin Solid Films. 2006;515:1229–1249.
  • Bobzin K, Lugscheider E, Maes M, et al. Relation of hardness and oxygen flow of Al2O3 coatings deposited by reactive bipolar pulsed magnetron sputtering. Thin Solid Films. 2006;494:255–262.
  • Strijckmans K, Schelfhout R, Depla D. Tutorial: hysteresis during the reactive magnetron sputtering process. J Appl Phys. 2018;124:241101.
  • Loiko P, Ismail N, Bradley JDB, et al. Refractive-index variation with rare-earth incorporation in amorphous Al2O3 thin films. J Non Cryst Solids. 2017;476:95–99.
  • Haglund E, Jahed M, Gustavsson JS, et al. High-power single transverse and polarization mode VCSEL for silicon photonics integration. Opt Express. 2019;27:18892–18899.
  • Xiang C, Jin W, Guo J, et al. Narrow-linewidth III-V/Si/ Si3N4 laser using multilayer heterogeneous integration. Optica. 2020;7:20–21.
  • Li N, Xin M, Su Z, et al. A silicon photonic data link with a monolithic erbium-doped laser. Sci Rep. 2020;10:1114.
  • Mears RJ, Reekie L, Jauncey IM, et al. Low-noise erbium-doped fibre amplifier operating at 1.54µm. Electron Lett. 1987;23:1026–1028.
  • Paschotta JN, Tropper AC, Hanna DC. Ytterbium-doped fiber amplifiers. IEEE J Quantum Electron. 1997;33:1049–1056.
  • Dakss ML, Miniscalco WJ. Fundamental limits on Nd/sup 3+-doped fiber amplifier performance at 1.3++ mu m. Photon Technol Lett. 1990;2:650.
  • Desurvire E, Simpson JR, Becker PC. High-gain erbium-doped traveling-wave fiber amplifier. Opt Lett. 1987;12:888–890.
  • Li Z, Heidt AM, Daniel JMO, et al. Thulium-doped fiber amplifier for optical communications at 2 µm. Opt Express. 2013;21:9289–9297.
  • Agazzi L, Wörhoff K, Pollnau M. Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: A case study in amorphous Al2O3: Er3+. J Phys Chem C. 2013;117:6759–6776.
  • Agazzi L, Wörhoff K, Kahn A, et al. Spectroscopy of upper energy levels in an Er3+-doped amorphous oxide. J Opt Soc Am B. 2013;30:663–677.
  • Loiko P, Pollnau M. Stochastic model of energy-transfer processes among rare-earth ions. Example of Al2O3: Tm3+. J Phys Chem C. 2016;120:26480–26489.
  • Magden E, Callahan P, Li N, et al. Frequency domain spectroscopy in rare-earth-doped gain media. IEEE J Quantum Electron. 2018;24:1–10.
  • Bradley JDB, Agazzi L, Geskus D, et al. Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3: Er3+ optical amplifiers on silicon. J Opt Soc Am B. 2010;27:187–196.
  • Bradley JDB, E Silva MC, Gay M, et al. 170 Gbit/s transmission in an erbium-doped waveguide amplifier on silicon. Opt Express. 2009;17:22201–22208.
  • Vázquez-Córdova SA, Dijkstra M, Bernhardi EH, et al. Erbium-doped spiral amplifiers with 20 dB of net gain on silicon. Opt Express. 2014;22:25993–26004.
  • Mu J, Dijkstra M, Korterik J, et al. High-gain waveguide amplifiers in Si3N4 technology via double-layer monolithic integration. Photon Res. in press
  • Fan XD, White IM, Shopova SI, et al. Sensitive optical biosensors for unlabeled targets: A review. Anal Chim Acta. 2008;620:8–26.
  • Zhu JG, Ozdemir SK, Xiao YF, et al. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat Photonics. 2010;4:46–49.
  • Shao LB, Jiang XF, Yu XC, et al. Detection of single nanoparticles and lentiviruses using microcavity resonance broadening. Adv Mater. 2013;25:5616.
  • Su J. Label-free biological and chemical sensing using whispering gallery mode optical resonators: past, present, and future. Sensors. 2017;17:540.
  • Steglich P, Hulsemann M, Dietzel B, et al. Optical biosensors based on silicon-on-insulator ring resonators: a review. Molecules. 2019;24:519.
  • White IM, Fan XD. On the performance quantification of resonant refractive index sensors. Opt Express. 2008;16:1020–1028.
  • Maker AJ, Armani AM. Heterodyned toroidal microlaser sensor. Appl Phys Lett. 2013;103:123302.
  • Li N, Su Z, Purnawirman ES, et al. Athermal synchronization of laser source with WDM filter in a silicon photonics platform. Appl Phys Lett. 2017;110:211105.