4,278
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Plasma meets metamaterials: Three ways to advance space micropropulsion systems

, , , &
Article: 1834452 | Received 05 Jun 2020, Accepted 03 Oct 2020, Published online: 20 Dec 2020

References

  • Choueiri EY. New Dawn for electric rockets. Sci American. 2009;300:58–28.
  • Levchenko I, Keidar M, Cantrell J, et al. Explore space using swarms of tiny satellites. Nature. 2018;562:185–187.
  • Lemmer K. Propulsion for CubeSats. Acta Astronaut. 2017;134:231.
  • Levchenko I, Bazaka K, Ding Y, et al. Space micropropulsion systems for Cubesats and small satellites: from proximate targets to furthermost frontiers. Appl Phys Rev. 2018;5:011104.
  • Gonzalo J, López D, Domínguez D, et al. On the capabilities and limitations of high altitude pseudo-satellites. Prog Aerosp Sci. 2018;98:37–56.
  • Levchenko I, Bazaka K, Mazouffre S, et al. Prospects and physical mechanisms for photonic space propulsion. Nat Photon. 2018;12:649.
  • Naser MZ, Chehab AI. Materials and design concepts for space-resilient structures. Prog Aerosp Sci. 2018;98:74.
  • Levchenko I, Xu S, Teel G, et al. Recent progress and perspectives of space electric propulsion systems based on smart nanomaterials. Nat Commun. 2018;9:879.
  • Do S, Owens A, Ho K, et al. An independent assessment of the technical feasibility of the Mars One mission plan – updated analysis. Acta Astronaut. 2016;120:192–228.
  • Szocik K, Lysenko-Ryba K, Banas S, et al. Political and legal challenges in a Mars colony. Space Policy. 2016;38:27–29. .
  • Levchenko I, Xu S, Mazouffre S, et al. Mars colonization: beyond getting there. Glob Chall. 2018;2:1800062.
  • Kaaret P. Asking a big question with a small satellite. Nat Astron. 2018;2:755.
  • Levchenko I, Romanov M, Korobov M. Current–voltage characteristics of a substrate in a crossed E×B field system exposed to plasma flux from vacuum arc plasma sources. Surf Coat Technol. 2004;184:356–360.
  • Ma Q, Bai GD, Jing H, et al. Smart metasurface with self-adaptively reprogrammable functions. Light Sci Applications. 2019;8:98.
  • Yonezawa T, Čempel D, Nguyen MT. Microwave-induced plasma-in-liquid process for nanoparticle production. Bull Chem Soc Jpn. 2018;91:1781–1798.
  • Levchenko I, Bazaka K, Baranov O, et al. Lightning under water: diverse reactive environments and evidence of synergistic effects for material treatment and activation. Appl Phys Rev. 2018;5:021103.
  • Kaushik NK, Kaushik N, Linh NN, et al. Plasma and nanomaterials: fabrication and biomedical applications. Nanomaterials. 2019;9:98.
  • Kang D-Y, Lee W, Kim D, et al. Three-dimensional polymeric mechanical metamaterials fabricated by multibeam interference lithography with the assistance of plasma etching. Langmuir. 2016;32:8436–8441.
  • Baranov O, Filipič G, Cvelbar U. Filipič G and Cvelbar U. Towards a highly-controllable synthesis of copper oxide nanowires in radio-frequency reactive plasma: fast saturation at the targeted size. Plasma Sources Sci Technol. 2019;28:084002.
  • Baranov O, Levchenko I, Xu S, et al. Formation of vertically oriented graphenes: what are the key drivers of growth? 2d Mater. 2018;5:044002.
  • Navarro R, Liard L, Sokoloff J. Effects of a low pressure plasma on a negative-permeability metamaterial. J Appl Phys. 2019;126:163304.
  • Iwai A, Righetti F, Wang B, et al. A tunable double negative device consisting of a plasma array and a negative-permeability metamaterial. Phys Plasmas. 2020;27:023511.
  • Ji J, Jiang J, Chen J, et al. Scattering reduction of perfectly electric conductive cylinder by coating plasma and metamaterial. Optik. 2018;161:98–105.
  • Fantini L, Dennison S, Kim H, et al. Plasma reconfigurable metamaterial using a 6.5 GHz dielectric resonator array. J Appl Phys. 2019;126:203301.
  • Liu C-H, Carrigan P, Kupczyk BJ, et al. Metamaterials for Rapidly forming large-area distributed plasma discharges for high-power microwave applications. IEEE Trans Plasma Sci. 2015;43:4099–4109.
  • Sakai O, Iwai A, Omura Y. Invariance of parameter identification in multiscales of meta-atoms in metamaterials. Adv Phys X. 2018;3:1433551.
  • Matlis EH, Corke TC, Neiswander B, et al. Electromagnetic wave transmittance control using self-organized plasma lattice metamaterial. J Appl Phys. 2018;124:093104.
  • Sakai O, Tachibana K. Plasmas as metamaterials: a review. Plasma Sources Sci Technol. 2012;21:013001.
  • Sakai O, Yamaguchi S, Bambina A, et al. Plasma metamaterials as cloaking and nonlinear media. Plasma Phys Contr Fusion. 2016;59:014042. .
  • Kizhakooden J, Jose J, Paul N, et al. Metamaterial inspired featherlight artificial plasma horn antenna for astronomical and communication applications. Microw Opt Techn Let. 2019;61:777–780. .
  • Mazouffre S. Electric propulsion for satellites and spacecraft: established technologies and novel approaches. Plasma Sources Sci Technol. 2016;25:033002.
  • Charles C. Plasmas for spacecraft propulsion. J Phys D Appl Phys. 2009;42:163001.
  • Levchenko I, Xu S, Mazouffre S, et al. Perspectives, frontiers, and new horizons for plasma-based space electric propulsion. Phys Plasmas. 2020;27:020601.
  • Levchenko I, Xu S, Bazaka K. Hopes and concerns for astronomy of satellite constellations. Nat Astron. 2020;4:1012–1014. https://doi.org/10.1038/s41550-020-1141-0
  • Hu W-R, Wu Y-L. The Taiji program in space for gravitational wave physics and the nature of gravity. Natl Sci Rev. 2017;4:685–686.
  • Levchenko I, Bazaka K, Keidar M, et al. Hierarchical multicomponent inorganic metamaterials: intrinsically driven self-assembly at the nanoscale. Adv Mater. 2018;2017:1702226.
  • Surjadi JU, Gao L, Du H, et al. Mechanical metamaterials and their engineering applications. Adv Eng Mater. 2019;21:1800864.
  • Levchenko I, Beilis I, Keidar M. Nanoscaled metamaterial as an advanced heat pump and cooling media. Adv Mater Technol. 2016;1:1600008.
  • Fang M, Zhang H, Sang L, et al. Plasma-assisted ALD to functionalize PET: towards new generation flexible gadgets. Flex Print Electron. 2017;2:022001.
  • Lim JWM, Levchenko I, Huang S, et al. Plasma parameters and discharge characteristics of lab-based krypton-propelled miniaturized Hall thruster. Plasma Sources Sci Technol. 2019;28:064003.
  • Sun Y, Levchenko I, Lim JWM, et al. Miniaturized rotating magnetic field driven plasma system: proof-of-concept experiments. Plasma Sources Sci Technol. 2020. in press. DOI:https://doi.org/10.1088/1361-6595/ab9b34.
  • Lim JWM, Huang S, Xu L, et al. Ultra-low reflective black silicon photovoltaics by high density inductively coupled plasmas. Solar Energy. 2018;171:841–850.
  • Zhou HP, Ye X, Huang W, et al. Wearable, flexible, disposable plasma-reduced graphene oxide stress sensors for monitoring activities in austere environments. ACS Appl Mater Interfaces. 2019;11:15122–15132.
  • Singhal N, Levchenko I, Huang S, et al. 3D-Printed multilayered reinforced material system for gas supply in Cubesats and small satellites. Adv Eng Mater. 2019;21:1900401.
  • Han ZJ, Yick S, Levchenko I, et al. Controlled synthesis of a large fraction of metallic single-walled carbon nanotube and semiconducting carbon nanowire networks. Nanoscale. 2011;3:3214–3220.
  • Czylkowski D, Hrycak B, Sikora A, et al. Surface modification of polycarbonate by an atmospheric pressure argon microwave plasma sheet. Materials. 2019;12:2418.
  • Baranov O, Levchenko I, Bell J, Lim M, Huang S, Xu L, Wang B, Aussems D U B, Xu S, Bazaka K. From nanometre to millimetre: a range of capabilities for plasma-enabled surface functionalization and  nanostructuring. Mater Horiz. 2018;5:765.
  • Bazaka K, Baranov O, Cvelbar U, Podgornik B, Wang Y, Huang S, Xu L, Lim J W M, Levchenko I, Xu S. Oxygen plasmas: a sharp chisel and handy trowel for nanofabrication, Nanoscale. 2018;10:17494 -17511 https://doi.org/10.1039/C8NR06502K.
  • Seo DH, Rider AE, Arulsamy A, et al. Increased size selectivity of Si quantum dots on SiC at low substrate temperatures: an ion-assisted self-organization approach. J Appl Phys. 2010;107:024313.
  • Levchenko I, Cvelbar U, Modic M, et al. Nanoherding: plasma-chemical synthesis and electric-charge-driven self organization of SiO2 nanodots. J Phys Chem Lett. 2013;4:681–686. .
  • Bazaka K, Levchenko I, Lim JWM, et al. MoS2-based nanostructures: synthesis and applications in medicine. J Phys D: Appl Phys. 2019;52:183001.
  • Levchenko I, Romanov M. Investigation of a steady-state cylindrical magnetron discharge for plasma immersion treatment. J Appl Phys. 2003;94:1408.
  • Hammadi OA, Naji NE. Characterization of polycrystalline nickel cobaltite nanostructures prepared by DC plasma magnetron co-sputtering for gas sensing applications. Photonic Sens. 2018;8:43–47.
  • Baranov OO, Cvelbar U, Bazaka K. Concept of a magnetically enhanced vacuum arc thruster with controlled distribution of ion flux. IEEE Trans Plasma Sci. 2018;42:304–310.
  • Gallo SC, Crespi AE, Cemin F, et al. Electrostatically confined plasma in segmented hollow cathode geometries for surface engineering. IEEE Trans Plasma Sci. 2011;39:3028–3029.
  • Baranov O, Romanov M, Fang J, et al. Control of ion density distribution by magnetic traps for plasma electrons. J Appl Phys. 2012;112:073302.
  • Baranov O, Xu S, Ostrikov K, et al. Towards universal plasma-enabled platform for the advanced nanofabrication: plasma physics level approach. Rev Mod Plasma Phys. 2018;2:4.
  • Chabert P, Braithwaite N. Physics of Radio-Frequency Plasmas. New York: Cambridge University Press; 2011. DOI:https://doi.org/10.1017/CBO9780511974342.
  • Beilis II. Vacuum arc cathode spot motion in oblique magnetic fields: an interpretation of the Robson experiment. Phys Plasmas. 2016;23:093501.
  • Baranov O, Levchenko I, Xu S, et al. Direct current arc plasma thrusters for space applications: basic physics, design and perspectives. Rev Mod Plasma Phys. 2019;3:7. .
  • Filipič G, Baranov O, Mozetič M, et al. Growth dynamics of copper oxide nanowires in plasma at low pressures. J Appl Phys. 2015;117:043304.
  • Kumar S, Levchenko I, Ostrikov K, et al. Plasma-enabled, catalyst-free growth of carbon nanotubes on mechanically-written Si features with arbitrary shape. Carbon. 2012;50:325–329.
  • Yue Z, Levchenko I, Kumar S, et al. Large networks of vertical multi-layer graphenes with morphology-tunable magnetoresistance. Nanoscale. 2013;5:9283–9288.
  • Alancherry S, Jacob MV, Prasad K, et al. Tuning and fine morphology control of natural resource-derived vertical graphene. Carbon. 2020;159:668–685.
  • Baranov O, Filipič G, Cvelbar U. Towards a highly-controllable synthesis of copper oxide nanowires in radio-frequency reactive plasma: fast saturation at the targeted size. Plasma Sources Sci Technol. 2019;28:084002.
  • Tian F, Li H, Li M. Synthesis of vertical graphene flowers as a photoelectrocatalyst for organic degradation. Micro Nano Lett. 2017;12:252–254.
  • Santhosh NM, Filipič G, Kovacevic E, et al. N-Graphene nanowalls via plasma nitrogen incorporation and substitution: the experimental evidence. Nano-Micro Lett. 2020;12:53.
  • Bogaerts A, Neyts EC. Plasma technology: an emerging technology for energy storage. ACS Energy Lett. 2018;3:1013–1027.
  • Fridman A. Plasma Chemistry. Cambridge: Cambridge University Press; 2008.
  • Baranov O, Romanov M, Ostrikov K. Discharge parameters and dominant electron conductivity mechanism in a low-pressure planar magnetron discharge. Phys Plasmas. 2009;16:063505.
  • Pellacani P, Morasso C, Picciolini S, et al. Plasma fabrication and SERS functionality of gold crowned silicon submicrometer pillars. Materials. 2020;13:1244.
  • Dutta N, Mirza IO, Shi S, et al. Fabrication of large area fishnet optical metamaterial structures operational at near-IR wavelengths. Materials. 2010;3:5283–5292.
  • Gao L, Song J, Jiao Z, et al. High-entropy alloy (HEA)-coated nanolattice structures and their mechanical properties. Adv Eng Mater. 2017;20:1700625.
  • Suresh SP, Lekshmi GS, Kirupha SD, et al. Superhydrophobic fluorine-modified cerium-doped mesoporous carbon as an efficient catalytic platform for photo-degradation of organic pollutants. Carbon. 2019;147:323–333.
  • Tamilselvi R, Ramesh M, Lekshmi GS, et al. Graphene oxide–Based supercapacitors from agricultural wastes: A step to mass production of highly efficient electrodes for electrical transportation systems. Renew Energy. 2020;151:731–739.
  • Yao Y, Huang Z, Xie P, et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science. 2018;359:1489–1494.
  • Haar MA, Polman A. Fabrication process of a coaxial plasmonic metamaterial. Opt Mater Express. 2016;6:884–911.
  • Xia X, Di Leo CV, Gu XW, et al. In situ lithiation−delithiation of mechanically robust Cu-Si Core-shell nanolattices in a scanning electron microscope. ACS Energy Lett. 2016;1:492–499.
  • Chen -C-C, Ishikawa A, Tang Y-H, et al. Uniaxial-isotropic metamaterials by three-dimensional split-ring resonators. Adv Optical Mater. 2014;391:44.
  • Vignolini S, Yufa NA, P S C, et al. A 3D optical metamaterial made by self-assembly. Adv Mater. 2012;24:OP23–OP27.
  • Levchenko I, Ostrikov K, Keidar M, et al. Microscopic ion fluxes in plasma-aided nanofabrication of ordered carbon nanotip structures. J Appl Phys. 2005;98:064304.
  • Levchenko I, Bazaka K, Belmonte T, et al. Advanced materials for next generation spacecraft. Adv Mater. 2018;30:1802201.
  • Keidar M, Levchenko I, Arbel T, et al. Magnetic-field-enhanced synthesis of single-wall carbon nanotubes in arc discharge. J Appl Phys. 2008;103:094318.
  • Levchenko I, Ostrikov K, Keidar M. Plasma-assembled carbon nanotubes: electric field–related effects. J Nanosci Nanotechnol. 2008;8:6112–6122.
  • Fang J, Levchenko I, Laan T, et al. Multipurpose nanoporous alumina–carbon nanowall bi-dimensional nano-hybrid platform via catalyzed and catalyst-free plasma CVD. Carbon. 2014;78:627–632.
  • Sung D, Volynets V, Hwang W, et al. Frequency and electrode shape effects on etch rate uniformity in a dual-frequency capacitive reactor. J Vac Sci Technol. A. 2012;30:061301. .
  • Peter S, Vasin Y, Speck F, et al. ECR plasma deposited a-SiCN:H as insulating layer in piezoceramic modules. Vacuum. 2018;155:118–126.
  • Keraudy J, Viloan RPB, Raadu MA, et al. Bipolar HiPIMS for tailoring ion energies in thin film deposition. Surf Coat Technol. 2019;359:433–437.
  • Baranov O, Fang J, Rider AE, et al. Effect of ion current density on the properties of vacuum arc-deposited TiN coatings. IEEE Trans Plasma Sci. 2013;41:3640–3644.
  • Guo B, Košiček M, Fu J, et al. Single-crystalline metal oxide nanostructures synthesized by plasma-enhanced thermal oxidation. Nanomaterials. 2019;9:1405.
  • Meng X, Kim HS, Lucero AT, et al. Hollow cathode plasma-enhanced atomic layer deposition of silicon nitride using pentachlorodisilane. Appl Mater Interfaces. 2018;10:14116–14123.
  • Baranov O, Fang J, Keidar M, et al. Effective control of the arc discharge-generated plasma jet by smartly designed magnetic fields. IEEE Trans Plasma Sci. 2014;42:2464–2465.
  • Asami Y, Sugawara H. Effect of substrate bias on production and transport of etchant ions in a magnetic neutral loop discharge plasma. IEEE Trans Plasma Sci. 2014;42:2540.
  • Ge PL, Bao MD, Zhang HJ, et al. Effect of plasma nitriding on adhesion strength of CrTiAlN coatings on H13 steels by closed field unbalanced magnetron sputter ion plating. Surf Coat Technol. 2013;229:146–150.
  • Fang J, Aharonovich I, Levchenko I, et al. Plasma-enabled growth of single-crystalline SiC/AlSiC core–shell nanowires on porous alumina templates. Cryst Growth Des. 2012;12:2917–2922.
  • Kourtzanidis K, Pederson DM. Raja LL Electromagnetic wave energy flow control with a tunable and recon figurable coupled plasma split-ring resonator metamaterial: a study of basic conditions and con figurations. J Appl Phys. 2016;119:204904.
  • Sakai O, Sakaguchi T, Naito T, et al. Characteristics of metamaterials composed of microplasma arrays. Plasma Phys Control Fusion. 2007;49:B453–B463.
  • Singh PK, Hopwood J, Sonkusale S. Metamaterials for remote generation of spatially controllable two dimensional array of microplasma. Sci Rep. 2015;4:5964.
  • Kim H, Hopwood J. Plasma-enhanced metamaterials using microwave radiative power transfer. Plasma Sources Sci Technol. 2018;27:095007.
  • Kim H, Hopwood J. Wave propagation in composites of plasma and metamaterials with negative permittivity and permeability. Sci Rep. 2019;9:3024.
  • Matlis EH, Ho ffman AJ, Corke TC. Experiments on a plasma-based metamaterial at microwave frequencies. AIAA SciTech. 2017, p. 1917, January 9-13. Grapevine, TX.
  • Shirafuji T, Kitagawa T, Wakai T, et al. Observation of self-organized filaments in a dielectric barrier discharge of Ar gas. Appl Phys Lett. 2003;83:2309–2311.
  • Zhang H, Yang J, Zhang H, et al. Design of an ultra-broadband absorber based on plasma metamaterial and lumped resistors. Opt Mater Express. 2018;8:2103.
  • Wei L, Dong L, Fan W, et al. A complex pattern with hexagonal lattice and white-eye stripe in dielectric barrier discharge. Sci Rep. 2018;8:3835.
  • Mi Y, Dong L, Liu B, et al. Square superlattice pattern with discharge holes due to direction-selective surface discharges in dielectric barrier discharge. Phys Plasmas. 2018;25:123502.
  • Optical plasmonic and photonic particle accelerators. http://eplab.ae.illinois.edu/research.html
  • Rovey JL, Friz PD, Hu C, et al. Plasmonic force space propulsion. J Spacecraft Rockets. 2015;52:1163–1168.
  • Maser J, Rovey J. Nanoparticle injector for photonic manipulators using dielectrophoresis. AIP Advances 2019;9:065109. https://doi.org/10.1063/1.5099520
  • Levchenko I, Ostrikov K, Keidar M, et al. Angular distribution of carbon ion flux in a nanotube array during the plasma process by the Monte Carlo technique. Phys Plasmas. 2007;14:113504.