4,936
Views
8
CrossRef citations to date
0
Altmetric
Review

Initiating revolutions for optical manipulation: the origins and applications of rotational dynamics of trapped particles

ORCID Icon, ORCID Icon & ORCID Icon
Article: 1838322 | Received 04 Aug 2020, Accepted 12 Oct 2020, Published online: 23 Dec 2020

References

  • Jones PH, Maragò OM, Volpe G. Optical tweezers: principles and applications. Cambridge University Press (Cambridge, UK); 2015.
  • Barredo D, Lienhard V, De Leseleuc S, et al. Synthetic three-dimensional atomic structures assembled atom by atom. Nature. 2018;561:79–74.
  • Kimura Y, Bianco PR. Single molecule studies of DNA binding proteins using optical tweezers. Analyst. 2006;131:868–874.
  • Ashkin A, Dziedzic JM. Optical trapping and manipulation of viruses and bacteria. Science. 1987;235:1517–1520.
  • Thalhammer G, Steiger R, Bernet S, et al. Optical macro-tweezers: trapping of highly motile micro-organisms. J Opt. 2011;13:044024.
  • Svoboda K, Block SM. Biological applications of optical forces. Annual Review of Biophysics and Biomolecular Structure. 1994;23:247–285.
  • Capitanio M, Pavone F. Interrogating biology with force: single molecule high-resolution measurements with optical tweezers. Biophys J. 2013;105:1293–1303.
  • Rodríguez-Sevilla P, Labrador-Páez L, Jaque D, et al. Optical trapping for biosensing: materials and applications. J Mater Chem B. 2017;5:9085–9101.
  • Favre-Bulle IA, Stilgoe AB, Scott EK, et al. Optical trapping in vivo: theory, practice, and applications. Nanophotonics. 2019;8:1023.
  • Block SM, Goldstein LSB, Schnapp BJ. Bead movement by single kinesin molecules studied with optical tweezers. Nature. 1990;348:348–352.
  • Svoboda K, Schmidt CF, Schnapp BJ, et al. Direct observation of kinesin stepping by optical trapping interferometry. Nature. 1993;365:721–727.
  • Bugiel M, Fantana H, Bormuth V, et al. Versatile microsphere attachment of GFP-labeled motors and other tagged proteins with preserved functionality. J Biol Methods. 2015;2:30.
  • Ashkin A, Dziedzic JM. Internal cell manipulation using infrared laser traps. Proc Natl Acad Sci USA. 1989;86:7914–7918.
  • Johansen PL, Fenaroli F, Evensen L, et al. Optical micromanipulation of nanoparticles and cells inside living zebrafish. Nat Commun. 2016;7:10974.
  • Favre-Bulle IA, Stilgoe AB, Rubinsztein-Dunlop H, et al. Optical trapping of otoliths drives vestibular behaviours in larval zebrafish. Nat Commun. 2017;8:630.
  • Parkin SJ, Knöner G, Nieminen TA, et al. Picoliter viscometry using optically rotated particles. Phys Rev E. 2007;76:041507.
  • Rodríguez-Sevilla P, Zhang Y, de Sousa N, et al. Optical torques on upconverting particles for intracellular microrheometry. Nano Lett. 2016;16:8005–8014.
  • Rodríguez-Sevilla P, Sanz-Rodríguez F, Peláez RP, et al. Upconverting nanorockers for intracellular viscosity measurements during chemotherapy. Adv Biosyst. 2019;3:1900082.
  • Martínez IA, Roldán, É, Dinis L, et al. Brownian Carnot engine. Nat Phys. 2016;12:67–70.
  • McCann LI, Dykman M, Golding B. Thermally activated transitions in a bistable three-dimensional optical trap. Nature. 1999;402:785–787.
  • Ashkin A, Dziedzic J. Feedback stabilization of optically levitated particles. Appl Phys Lett. 1977;30:202–204.
  • Millen J, Monteiro TS, Pettit R, et al. Optomechanics with levitated particles. Rep Prog Phys. 2020;83:026401.
  • Li T, Kheifets S, Medellin D, et al. Measurement of the instantaneous velocity of a Brownian particle. Science. 2010;328:1673–1675.
  • Ranjit G, Cunningham M, Casey K, et al. Zeptonewton force sensing with nanospheres in an optical lattice. Phys Rev A. 2016;93:053801.
  • Monteiro F, Li W, Afek G, et al. Force and acceleration sensing with optically levitated nanogram masses at microkelvin temperatures. Phys Rev A. 2020;101:053835.
  • Romero-Isart O, Juan ML, Quidant R, et al. Toward quantum superposition of living organisms. New J Phys. 2010;12:033015.
  • Chang DE, Regal CA, Papp SB, et al. Cavity opto-mechanics using an optically levitated nanosphere. Proc Natl Acad Sci USA. 2010;107:1005–1010.
  • Geraci AA, Papp SB, Kitching J. Short-range force detection using optically cooled levitated microspheres. Phys Rev Lett. 2010;105:101101.
  • Romero-Isart O. Quantum superposition of massive objects and collapse models. Phys Rev A. 2011;84:052121.
  • Romero-Isart O, Pflanzer AC, Blaser F, et al. Large quantum superpositions and interference of massive nanometer-sized objects. Phys Rev Lett. 2011;107:020405.
  • Bassi A, Lochan K, Satin S, et al. Models of wave-function collapse, underlying theories, and experimental tests. Rev Mod Phys. 2013;85:471–527.
  • Bateman J, Nimmrichter S, Hornberger K, et al. Near-field interferometry of a free-falling nanoparticle from a point-like source. Nat Commun. 2014;5:4788.
  • Bateman J, McHardy I, Merle A, et al. On the existence of low-mass dark matter and its direct detection. Sci Rep. 2015;5:8058.
  • Wan C, Scala M, Morley GW, et al. Free nano-object Ramsey interferometry for large quantum superpositions. Phys Rev Lett. 2016;117:143003.
  • Romero-Isart O. Coherent inflation for large quantum superpositions of levitated microspheres. New J Phys. 2017;19:123029.
  • Bose S, Mazumdar A, Morley GW, et al. Spin entanglement witness for quantum gravity. Phys Rev Lett. 2017;119:240401.
  • Li T, Kheifets S, Raizen MG. Millikelvin cooling of an optically trapped microsphere in vacuum. Nat Phys. 2011;7:527–530.
  • Gieseler J, Deutsch B, Quidant R, et al. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Phys Rev Lett. 2012;109:103603.
  • Kiesel N, Blaser F, Delić U, et al. Cavity cooling of an optically levitated submicron particle. Proc Natl Acad Sci USA. 2013;110:14180–14185.
  • Windey D, Gonzalez-Ballestero C, Maurer P, et al. Cavity-based 3D cooling of a levitated nanoparticle via coherent scattering. Phys Rev Lett. 2019;122:123601.
  • Delić U, Reisenbauer M, Grass D, et al. Cavity cooling of a levitated nanosphere by coherent scattering. Phys Rev Lett. 2019;122:123602.
  • Conangla GP, Ricci F, Cuairan MT, et al. Optimal feedback cooling of a charged levitated nanoparticle with adaptive control. Phys Rev Lett. 2019;122:223602.
  • Tebbenjohanns F, Frimmer M, Militaru A, et al. Cold damping of an optically levitated nanoparticle to microkelvin temperatures. Phys Rev Lett. 2019;122:223601.
  • Delić U, Reisenbauer M, Dare K, et al. Cooling of a levitated nanoparticle to the motional quantum ground state. Science. 2020;367:892–895.
  • Būtaitė UG, Gibson GM, Ho YLD, et al. Indirect optical trapping using light driven micro-rotors for reconfigurable hydrodynamic manipulation. Nat Commun. 2019;10:1215.
  • Wu T, Nieminen TA, Mohanty S, et al. A photon-driven micromotor can direct nerve fibre growth. Nat Photonics. 2012;6:62–67.
  • Ramaiya A, Roy B, Bugiel M, et al. Kinesin rotates unidirectionally and generates torque while walking on microtubules. Proc Natl Acad Sci USA. 2017;114:10894–10899.
  • Padgett M, Bowman R. Tweezers with a twist. Nat Photonics. 2011;5:343–348.
  • Ahn J, Xu Z, Bang J, et al. Ultrasensitive torque detection with an optically levitated nanorotor. Nat Nanotechnol. 2020;15:89–93.
  • Skelton Spesyvtseva SE, Dholakia K. Trapping in a material world. ACS Photonics. 2016;3:719–736.
  • Manjavacas A, García De Abajo FJ. Vacuum friction in rotating particles. Phys Rev Lett. 2010;105:113601.
  • Manjavacas A, García De Abajo FJ. Thermal and vacuum friction acting on rotating particles. Phys Rev A. 2010;82:063827.
  • Zhao R, Manjavacas A, García De Abajo FJ, et al. Rotational quantum friction. Phys Rev Lett. 2012;109:123604.
  • Beresnev SA, Chernyak VG, Fomyagin GA. Motion of a spherical particle in a rarefied gas. Part 2. Drag and thermal polarization. J Fluid Mech. 1990;219:405–421.
  • Kuhn S, Asenbaum P, Kosloff A, et al. Cavity-assisted manipulation of freely rotating silicon nanorods in high vacuum. Nano Lett. 2015;15:5604–5608.
  • Wang K, Schonbrun E, Steinvurzel P, et al. Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink. Nat Commun. 2011;2:469.
  • Biswas T, Kani A, Bhattacharya M. Rotating levitated nanoparticle sensors in a hollow-core photonic crystal fiber. J Opt Soc Am B. 2020;37:1598–1605.
  • Tkachenko G, Toftul I, Esporlas C, et al. Light-induced rotation of dielectric microparticles around an optical nanofiber. Optica. 2020;7:59–62.
  • Arnold S, Keng D, Shopova SI, et al. Whispering gallery mode carousel – a photonic mechanism for enhanced nanoparticle detection in biosensing. Opt Express. 2009;17:6230–6238.
  • Zou X, Zheng Q, Wu D, et al. Controllable cellular micromotors based on optical tweezers. Adv Funct Mater. 2020;30:2002081.
  • Rodríguez-Sevilla P, Labrador-Páez L, Wawrzyńczyk D, et al., et al. Determining the 3D orientation of optically trapped upconverting nanorods by in situ single-particle polarized spectroscopy. Nanoscale. 2016;8:300–308.
  • Lenton ICD, Armstrong DJ, Stilgoe AB, et al. Orientation of swimming cells with annular beam optical tweezers. Opt Commun. 2020;459:124864.
  • Čižmár T, Brzobohatý O, Dholakia K, et al. The holographic optical micro-manipulation system based on counter-propagating beams. Laser Phys Lett. 2010;8:50–56.
  • Paterson L, MacDonald MP, Arlt J, et al. Controlled rotation of optically trapped microscopic particles. Science. 2001;292:912–914.
  • Zhang P, Hernandez D, Cannan D, et al. Trapping and rotating microparticles and bacteria with Moiré-based optical propelling beams. Biomed Opt Express. 2012;3:1891–1897.
  • MacDonald MP, Paterson L, Volke-Sepulveda K, et al. Creation and manipulation of three-dimensional optically trapped structures. Science. 2002;296:1101–1103.
  • Franke-Arnold S, Leach J, Padgett MJ, et al. Optical Ferris wheel for ultracold atoms. Opt Express. 2007;15:8619–8625.
  • Bezryadina AS, Preece DC, Chen JC, et al. Optical disassembly of cellular clusters by tunable ‘tug-of-war’ tweezers. Light Sci Appl. 2016;5:e16158.
  • Roichman Y, Sun B, Stolarski A, et al. Influence of nonconservative optical forces on the dynamics of optically trapped colloidal spheres: the fountain of probability. Phys Rev Lett. 2008;101:128301.
  • Cheng Z, Chaikin PM, Mason TG. Light streak tracking of optically trapped thin microdisks. Phys Rev Lett. 2002;89:108303.
  • Cheng Z, Mason TG, Chaikin PM. Periodic oscillation of a colloidal disk near a wall in an optical trap. Phys Rev E. 2003;68:051404.
  • Mihiretie BM, Snabre P, Loudet JC, et al. Radiation pressure makes ellipsoidal particles tumble. EPL. 2012;100:48005.
  • Leach J, Mushfique H, Keen S, et al. Comparison of Faxén’s correction for a microsphere translating or rotating near a surface. Phys Rev E. 2009;79:026301.
  • Stickler BA, Nimmrichter S, Martinetz L, et al. Rotranslational cavity cooling of dielectric rods and disks. Phys Rev A. 2016;94:033818.
  • Hoang TM, Ma Y, Ahn J, et al. Torsional optomechanics of a levitated nonspherical nanoparticle. Phys Rev Lett. 2016;117:1223604.
  • La Porta A, Wang MD. Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. Phys Rev Lett. 2004;92:190801.
  • Friese M, Nieminen T, Heckenberg N, et al. Optical alignment and spinning of laser-trapped microscopic particles. Nature. 1998;394:348–350.
  • Nieminen TA, Heckenberg NR, Rubinsztein-dunlop H. Optical measurement of microscopic torques. J Mod Opt. 2001;48:405–413.
  • Simpson SH. Inhomogeneous and anisotropic particles in optical traps: physical behaviour and applications. J Quant Spectrosc Radiat Transf. 2014;146:81–99.
  • Higurashi E, Sawada R, Ito T. Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light. Phys Rev E. 1999;59:3676–3681.
  • Ahn J, Xu Z, Bang J, et al. Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor. Phys Rev Lett. 2018;121:33603.
  • Kuhn S, Kosloff A, Stickler BA, et al. Full rotational control of levitated silicon nanorods. Optica. 2017;4:356.
  • Rahman AA, Barker P. Laser refrigeration, alignment and rotation of levitated Yb3+:YLF nanocrystals. Nat Photonics. 2017;11:634.
  • Zhong C, Robicheaux F. Shot-noise-dominant regime for ellipsoidal nanoparticles in a linearly polarized beam. Phys Rev A. 2017;95:053421.
  • Bonin KD, Kourmanov B, Walker TG. Light torque nanocontrol, nanomotors and nanorockers. Opt Express. 2002;10:984–989.
  • Tong L, Miljković VD, Käll M. Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces. Nano Lett. 2010;10:268–273.
  • Wulff KD, Cole DG, Clark RL. Controlled rotation of birefringent particles in an optical trap. Appl Opt. 2008;47:6428–6433.
  • Beth RA. Mechanical detection and measurement of the angular momentum of light. Phys Rev. 1936;50:115.
  • Friese MEJ, Enger J, Rubinsztein-Dunlop H, et al. Optical angular-momentum transfer to trapped absorbing particles. Phys Rev A. 1996;54:1593–1596.
  • Lehmuskero A, Ogier R, Gschneidtner T, et al. Ultrafast spinning of gold nanoparticles in water using circularly polarized light. Nano Lett. 2013;13:3129–3134.
  • Marston PL, Crichton JH. Radiation torque on a sphere caused by a circularly-polarized electromagnetic wave. Phys Rev A. 1984;30:2508–2516.
  • Shao L, Yang ZJ, Andrén D, et al. Gold nanorod rotary motors driven by resonant light scattering. ACS Nano. 2015;9:12542–12551.
  • Runowski M, Woźny P, Lis S, et al. Optical vacuum sensor based on lanthanide upconversion—luminescence thermometry as a tool for ultralow pressure sensing. Adv Mater Technol. 2020;5:1901091.
  • Courtial J, Padgett MJ. Limit to the orbital angular momentum per unit energy in a light beam that can be focussed onto a small particle. Opt Commun. 2000;173:269–274.
  • Lehmuskero A, Li Y, Johansson P, et al. Plasmonic particles set into fast orbital motion by an optical vortex beam. Opt Express. 2014;22:4349–4356.
  • Allen L, Beijersbergen MW, Spreeuw RJC, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A. 1992;45:8185–8189.
  • O’Neil AT, MacVicar I, Allen L, et al. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys Rev Lett. 2002;88:053601.
  • O’Neil AT, Padgett MJ. Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner. Opt Commun. 2000;185:139–143.
  • Zhao Y, Edgar JS, Jeffries GDM, et al. Spin-to-orbital angular momentum conversion in a strongly focused optical beam. Phys Rev Lett. 2007;99:073901.
  • Volke-Sepulveda K, Garcés-Chávez V, Chávez-Cerda S, et al. Orbital angular momentum of a high-order Bessel light beam. J Opt B: Quant Semiclass. 2002;4:S82–S89.
  • Garcés-Chávez V, McGloin D, Padgett M, et al. Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle. Phys Rev Lett. 2003;91:093602.
  • He H, Friese ME, Heckenberg NR, et al. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys Rev Lett. 1995;75:826–829.
  • Simpson NB, Dholakia K, Allen L, et al. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Opt Lett. 1997;22:52–54.
  • Dienerowitz M, Mazilu M, Reece PJ, et al. Optical vortex trap for resonant confinement of metal nanoparticles. Opt Express. 2008;16:4991–4999.
  • Grier DG. A revolution in optical manipulation. Nature. 2003;424:810–816.
  • Dholakia K, Čižmár T. Shaping the future of manipulation. Nat Photonics. 2011;5:335–342.
  • Padgett MJ. Orbital angular momentum 25 years on. Opt Express. 2017;25:11265–11274.
  • Wang X, Nie Z, Liang Y, et al. Recent advances on optical vortex generation. Nanophotonics. 2018;7:1533–1556.
  • Dickey FM. Laser beam shaping: theory and techniques. Boca Raton, FL: CRC press; 2018.
  • Forbes A. Structured light from lasers. Laser Photonics Rev. 2019;13:1900140.
  • Rubinsztein-Dunlop H, Forbes A, Berry MV, et al. Roadmap on structured light. J Opt. 2016;19:013001.
  • Shen Y, Wang X, Xie Z, et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci Appl. 2019;8:1–29.
  • Donato MG, Brzobohatý O, Simpson SH, et al. Optical trapping, optical binding, and rotational dynamics of silicon nanowires in counter-propagating beams. Nano Lett. 2019;19:342–352.
  • Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys Rev Lett. 2006;96:163905.
  • Nieminen TA, Stilgoe AB, Heckenberg NR, et al. Angular momentum of a strongly focused Gaussian beam. J Opt A: Pure Appl Opt. 2008;10:115005.
  • Li M, Cai Y, Yan S, et al. Orbit-induced localized spin angular momentum in strong focusing of optical vectorial vortex beams. Phys Rev A. 2018;97:053842.
  • Zhao Y, Shapiro D, McGloin D, et al. Direct observation of the transfer of orbital angular momentum to metal particles from a focused circularly polarized Gaussian beam. Opt Express. 2009;17:23316–23322.
  • Ranjit G, Montoya C, Geraci AA. Cold atoms as a coolant for levitated optomechanical systems. Phys Rev A. 2015;91:013416.
  • Koya AN, Cunha J, Guo TL, et al. Novel plasmonic nanocavities for optical trapping-assisted biosensing applications. Adv Opt Mater. 2020;8:1901481.
  • Lei H, Zhang Y, Li X, et al. Photophoretic assembly and migration of dielectric particles and escherichia coli in liquids using a subwavelength diameter optical fiber. Lab Chip. 2011;11:2241–2246.
  • Frawley MC, Gusachenko I, Truong VG, et al. Selective particle trapping and optical binding in the evanescent field of an optical nanofiber. Opt Express. 2014;22:16322–16334.
  • Constable A, Kim J, Mervis J, et al. Demonstration of a fiber-optical light-force trap. Opt Lett. 1993;18:1867–1869.
  • Xiao G, Yang K, Luo H, et al. Orbital rotation of trapped particle in a transversely misaligned dual-fiber optical trap. IEEE Photon J. 2016;8:6100108.
  • Blakely JT, Gordon R, Sinton D. Flow-dependent optofluidic particle trapping and circulation. Lab Chip. 2008;8:1350–1356.
  • Kreysing MK, Kießling T, Fritsch A, et al. The optical cell rotator. Opt Express. 2008;16:16984–16992.
  • Brzobohatý O, Arzola AV, Šiler M, et al. Complex rotational dynamics of multiple spheroidal particles in a circularly polarized, dual beam trap. Opt Express. 2015;23:7273–7287.
  • Wilson BK, Mentele T, Bachar S, et al. Nanostructure-enhanced laser tweezers for efficient trapping and alignment of particles. Opt Express. 2010;18:16005–16013.
  • Liu M, Zentgraf T, Liu Y, et al. Light-driven nanoscale plasmonic motors. Nat Nanotechnol. 2010;5:570–573.
  • Tsai WY, Huang JS, Huang CB. Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic Archimedes spiral. Nano Lett. 2014;14:547–552.
  • Rodrigo JA, Alieva T. Freestyle 3D laser traps: tools for studying light-driven particle dynamics and beyond. Optica. 2015;2:812–815.
  • Ladavac K, Grier DG. Colloidal hydrodynamic coupling in concentric optical vortices. EPL. 2005;70:548–554.
  • Shen Z, Su L, Yuan XC, et al. Trapping and rotating of a metallic particle trimer with optical vortex. Appl Phys Lett. 2016;109:241901.
  • Tao SH, Yuan XC, Lin J, et al. Influence of geometric shape of optically trapped particles on the optical rotation induced by vortex beams. J Appl Phys. 2006;100:043105.
  • Burns MM, Fournier JM, Golovchenko JA. Optical binding. Phys Rev Lett. 1989;63:1233–1236.
  • Haefner D, Sukhov S, Dogariu A. Conservative and nonconservative torques in optical binding. Phys Rev Lett. 2009;103:173602.
  • Liaw JW, Huang MC, Chao HY, et al. Spin and orbital rotation of plasmonic dimer driven by circularly polarized light. Nanoscale Res Lett. 2018;13:322.
  • Sule N, Yifat Y, Gray SK, et al. Rotation and negative torque in electrodynamically bound nanoparticle dimers. Nano Lett. 2017;17:6548–6556.
  • Han F, Parker JA, Yifat Y, et al. Crossover from positive to negative optical torque in mesoscale optical matter. Nat Commun. 2018;9:4897.
  • Tamura M, Omatsu T, Tokonami S, et al. Interparticle-interaction-mediated anomalous acceleration of nanoparticles under light-field with coupled orbital and spin angular momentum. Nano Lett. 2019;19:4873–4878.
  • Deufel C, Forth S, Simmons CR, et al. Nanofabricated quartz cylinders for angular trapping: DNA supercoiling torque detection. Nat Methods. 2007;4:223–225.
  • Bishop AI, Nieminen TA, Heckenberg NR, et al. Optical microrheology using rotating laser-trapped particles. Phys Rev Lett. 2004;92:198104.
  • Knöner G, Parkin S, Heckenberg NR, et al. Characterization of optically driven fluid stress fields with optical tweezers. Phys Rev E. 2005;72:031507.
  • Leach J, Mushfique H, Di Leonardo R, et al. An optically driven pump for microfluidics. Lab Chip. 2006;6:735–739.
  • Arita Y, McKinley AW, Mazilu M, et al. Picoliter rheology of gaseous media using a rotating optically trapped birefringent microparticle. Anal Chem. 2011;83:8855–8858.
  • Arita Y, Mazilu M, Dholakia K. Laser-induced rotation and cooling of a trapped microgyroscope in vacuum. Nat Commun. 2013;4:2374.
  • Monteiro F, Ghosh S, Van Assendelft EC, et al. Optical rotation of levitated spheres in high vacuum. Phys Rev A. 2018;97:51802.
  • Arita Y, Richards JM, Mazilu M, et al. Rotational dynamics and heating of trapped nanovaterite particles. ACS Nano. 2016;10:11505–11510.
  • Fernández-Nieves A, Cristobal G, Garcés-Chávez V, et al. Optically anisotropic colloids of controllable shape. Adv Mater. 2005;17:680–684.
  • Wood TA, Gleeson HF, Dickinson MR, et al. Mechanisms of optical angular momentum transfer to nematic liquid crystalline droplets. Appl Phys Lett. 2004;84:4292–4294.
  • Roder PB, Smith BE, Zhou X, et al. Laser refrigeration of hydrothermal nanocrystals in physiological media. Proc Natl Acad Sci USA. 2015;112:15024–15029.
  • Rodríguez-Sevilla P, Lee T, Liang L, et al. Light-activated upconverting spinners. Adv Opt Mater. 2018;6:1800161.
  • Rodríguez-Sevilla P, Arita Y, Liu X, et al. The temperature of an optically trapped, rotating microparticle. ACS Photonics. 2018;5:3772–3778.
  • Ha S, Tang Y, van Oene MM, et al. Single-crystal rutile TiO2 nanocylinders are highly effective transducers of optical force and torque. ACS Photonics. 2019;6:1255–1265.
  • Jaque D, Martínez Maestro L, Del Rosal B, et al. Nanoparticles for photothermal therapies. Nanoscale. 2014;6:9494–9530.
  • Abbas MM, Craven PD, Spann JF, et al. Laboratory experiments on rotation and alignment of the analogs of interstellar dust grains by radiation. Astrophys J. 2004;614:781–795.
  • Galajda P, Ormos P. Orientation of flat particles in optical tweezers by linearly polarized light. Opt Express. 2003;11:446–451.
  • Singer W, Nieminen TA, Gibson UJ, et al. Orientation of optically trapped nonspherical birefringent particles. Phys Rev E. 2006;73:021911.
  • Neale SL, MacDonald MP, Dholakia K, et al. All-optical control of microfluidic components using form birefringence. Nat Mater. 2005;4:530–533.
  • Galajda P, Ormos P. Complex micromachines produced and driven by light. Appl Phys Lett. 2001;78:249–251.
  • Higurashi E, Ukita H, Tanaka H, et al. Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining. Appl Phys Lett. 1994;64:2209–2210.
  • Galajda P, Ormos P. Rotors produced and driven in laser tweezers with reversed direction of rotation. Appl Phys Lett. 2002;80:4653–4655.
  • Swartzlander Jr GA, Peterson TJ, Artusio-Glimpse AB, et al. Stable optical lift. Nat Photonics. 2011;5:48.
  • Asavei T, Loke VLY, Barbieri M, et al. Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization. New J Phys. 2009;11:093021.
  • Svenskaya YI, Fattah H, Inozemtseva OA, et al. Key parameters for size- and shape-controlled synthesis of vaterite particles. Cryst Growth Des. 2018;18:331–337.
  • Liu D, Xu X, Du Y, et al. Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals. Nat Commun. 2016;7:10254.
  • Lee YJ, Schade NB, Sun L, et al. Ultrasmooth, highly spherical monocrystalline gold particles for precision plasmonics. ACS Nano. 2013;7:11064–11070.
  • Rashid M, Toroš M, Setter A, et al. Precession motion in levitated optomechanics. Phys Rev Lett. 2018;121:253601.
  • Ilic O, Kaminer I, Zhen B, et al. Topologically enabled optical nanomotors. Sci Adv. 2017;3:e1602738.
  • Zong Y, Liu J, Liu R, et al. An optically driven bistable Janus rotor with patterned metal coatings. ACS Nano. 2015;9:10844–10851.
  • Hernández RJ, Mazzulla A, Provenzano C, et al. Chiral resolution of spin angular momentum in linearly polarized and unpolarized light. Sci Rep. 2015;5:16926.
  • Martinetz L, Hornberger K, Stickler BA. Gas-induced friction and diffusion of rigid rotors. Phys Rev E. 2018;97:052112.
  • Reimann R, Doderer M, Hebestreit E, et al. GHz rotation of an optically trapped nanoparticle in vacuum. Phys Rev Lett. 2018;121:33602.
  • Nagornykh P, Coppock JE, Murphy JPJ, et al. Optical and magnetic measurements of gyroscopically stabilized graphene nanoplatelets levitated in an ion trap. Phys Rev B. 2017;96:035402.
  • Schuck M, Steinert D, Nussbaumer T, et al. Ultrafast rotation of magnetically levitated macroscopic steel spheres. Sci Adv. 2018;4:e1701519.
  • Hümmer D, Lampert R, Kustura K, et al. Acoustic and optical properties of a fast-spinning dielectric nanoparticle. Phys Rev B. 2020;101:205416.
  • Mazilu M, Arita Y, Vettenburg T, et al. Orbital-angular-momentum transfer to optically levitated microparticles in vacuum. Phys Rev A. 2016;94:053821.
  • Svak V, Brzobohatý O, Šiler M, et al. Transverse spin forces and non-equilibrium particle dynamics in a circularly polarized vacuum optical trap. Nat Commun. 2018;9:5453.
  • Arita Y, Chen M, Wright EM, et al. Dynamics of a levitated microparticle in vacuum trapped by a perfect vortex beam: three-dimensional motion around a complex optical potential. J Opt Soc Am B. 2017;34:C14–C19.
  • Chen X, Xiao G, Xiong W, et al. Rotation of an optically trapped vaterite microsphere measured using rotational Doppler effect. Opt Eng. 2018;57:036103.
  • Bishop AI, Nieminen TA, Heckenberg NR, et al. Optical application and measurement of torque on microparticles of isotropic nonabsorbing material. Phys Rev A. 2003;68:033802.
  • Volpe G, Petrov D. Torque detection using Brownian fluctuations. Phys Rev Lett. 2006;97:210603.
  • Bliokh KY, Bekshaev AY, Nori F. Extraordinary momentum and spin in evanescent waves. Nat Commun. 2014;5:3300.
  • Angelsky OV, Bekshaev AY, Maksimyak PP, et al. Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams. Opt Express. 2012;20:3563–3571.
  • Roy B, Ghosh N, Banerjee A, et al. Manifestations of geometric phase and enhanced spin Hall shifts in an optical trap. New J Phys. 2014;16:083037.
  • Arzola AV, Chvátal L, Jákl P, et al. Spin to orbital light momentum conversion visualized by particle trajectory. Sci Rep. 2019;9:4127.
  • Gooding C, Weinfurtner S, Unruh WG. Reinventing the Zel’Dovich wheel. Phys Rev A. 2020;101:063819.
  • Braidotti MC, Vinante A, Gasbarri G, et al. Zel’Dovich amplification in a superconducting circuit. arXiv. 2020;2005:03705.
  • Mushfique H, Leach J, Di Leonardo R, et al. Optically driven pumps and flow sensors for microfluidic systems. Proc Inst Mech Eng Part C. 2008;222:829–837.
  • Špová-Jungová H, Andrén D, Jones S, et al. Nanoscale inorganic motors driven by light: principles, realizations, and opportunities. Chem Rev. 2020;120:269–287.
  • Li Y, Liu X, Xu X, et al. Red-blood-cell waveguide as a living biosensor and micromotor. Adv Funct Mater. 2019;29:1905568.
  • Zheng J, Xing X, Yang J, et al. Hybrid optofluidics and three-dimensional manipulation based on hybrid photothermal waveguides. NPG Asia Mater. 2018;10:340–351.
  • Ronzani A, Karimi B, Senior J, et al. Tunable photonic heat transport in a quantum heat valve. Nat Phys. 2018;14:991–995.
  • Klatzow J, Becker JN, Ledingham PM, et al. Experimental demonstration of quantum effects in the operation of microscopic heat engines. Phys Rev Lett. 2019;122:110601.
  • Maslennikov G, Ding S, Hablützel R, et al. Quantum absorption refrigerator with trapped ions. Nat Commun. 2019;10:202.
  • Mitchison MT. Quantum thermal absorption machines: refrigerators, engines and clocks. Contemp Phys. 2019;60:164–187.
  • Gieseler J, Millen J. Levitated nanoparticles for microscopic thermodynamics - a review. Entropy. 2018;20:326.
  • Roulet A, Nimmrichter S, Arrazola JM, et al. Autonomous rotor heat engine. Phys Rev E. 2017;95:062131.
  • Arita Y, Simpson SH, Zemánek P, et al. Coherent oscillations of a levitated birefringent microsphere in vacuum driven by nonconservative rotation-translation coupling. Sci Adv. 2020;6:eaaz9858.
  • Irrera A, Magazzú A, Artoni P, et al. Photonic torque microscopy of the nonconservative force field for optically trapped silicon nanowires. Nano Lett. 2016;16:4181–4188.
  • Liu Z, Leong J, Nimmrichter S, et al. Quantum gears from planar rotors. Phys Rev E. 2019;99:042202.
  • Arita Y, Mazilu M, Vettenburg T, et al. Rotation of two trapped microparticles in vacuum: observation of optically mediated parametric resonances. Opt Lett. 2015;40:4751.
  • Arita Y, Wright EM, Dholakia K. Optical binding of two cooled micro-gyroscopes levitated in vacuum. Optica. 2018;5:910.
  • Kalwarczyk T, Ziȩbacz N, Bielejewska A, et al. Comparative analysis of viscosity of complex liquids and cytoplasm of mammalian cells at the nanoscale. Nano Lett. 2011;11:2157–2163.
  • Wirtz D. Particle-tracking microrheology of living cells: principles and applications. Annu Rev Biophys. 2009;38:301–326.
  • Robertson-Anderson RM. Optical tweezers microrheology: from the basics to advanced techniques and applications. ACS Macro Lett. 2018;7:968–975.
  • Vaippully R, Ramanujan V, Bajpai S, et al. Measurement of viscoelastic properties of the cellular cytoplasm using optically trapped Brownian probes. J Phys: Condens Matter. 2020;32:235101.
  • Blehm BH, Devine A, Staunton JR, et al. In vivo tissue has non-linear rheological behavior distinct from 3D biomimetic hydrogels, as determined by amotiv microscopy. Biomaterials. 2016;83:66–78.
  • Arzola AV, Jákl P, Chvátal L, et al. Rotation, oscillation and hydrodynamic synchronization of optically trapped oblate spheroidal microparticles. Opt Express. 2014;22:16207–16221.
  • Kraft DJ, Wittkowski R, Ten Hagen B, et al. Brownian motion and the hydrodynamic friction tensor for colloidal particles of complex shape. Phys Rev E. 2013;88:050301.
  • Kern M, Jeske J, Lau DWM, et al. Optical cryocooling of diamond. Phys Rev B. 2017;95:235306.
  • Blakemore CP, Martin D, Fieguth A, et al. Absolute pressure and gas species identification with an optically levitated rotor. J Vac Sci Technol B. 2020;38:024201.
  • Maxwell JC. On the viscosity or internal friction of air and other gases. Philos Trans Royal Soc (London). 1866;156:249–268.
  • Kuhn S, Stickler BA, Kosloff A, et al. Optically driven ultra-stable nanomechanical rotor. Nat Commun. 2017;8:1670.
  • Rider AD, Blakemore CP, Kawasaki A, et al. Electrically driven, optically levitated microscopic rotors. Phys Rev A. 2019;99:041802.
  • Moore RW, Lee LA, Findlay EA, et al. Measurement of vacuum pressure with a magneto-optical trap: a pressure-rise method. Rev Sci Instrum. 2015;86:093108.
  • Eckel S, Barker DS, Fedchak JA, et al. Challenges to miniaturizing cold atom technology for deployable vacuum metrology. Metrologia. 2018;55:S182.
  • Rings D, Selmke M, Cichos F, et al. Theory of hot Brownian motion. Soft Matter. 2011;7:3441–3452.
  • Rings D, Chakraborty D, Kroy K. Rotational hot Brownian motion. New J Phys. 2012;14:053012.
  • Srivastava M, Chakraborty D. The effective temperature for the thermal fluctuations in hot Brownian motion. J Chem Phys. 2018;148:204902.
  • Hajizadeh F, Shao L, Andrén D, et al. Brownian fluctuations of an optically rotated nanorod. Optica. 2017;4:746–751.
  • Millen J, Deesuwan T, Barker P, et al. Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere. Nat Nanotechnol. 2014;9:425.
  • Hebestreit E, Reimann R, Frimmer M, et al. Measuring the internal temperature of a levitated nanoparticle in high vacuum. Phys Rev A. 2018;97:043803.
  • Seletskiy DV, Melgaard SD, Bigotta S, et al. Laser cooling of solids to cryogenic temperatures. Nat Photonics. 2010;4:161–164.
  • Melgaard SD, Albrecht AR, Hehlen MP, et al. Solid-state optical refrigeration to sub-100 Kelvin regime. Sci Rep. 2016;6:20380.
  • van der Laan F, Reimann R, Militaru A, et al. Optically levitated rotor at its thermal limit of frequency stability. Phys Rev A. 2020;102:013505.
  • Seberson T, Robicheaux F. Stability and dynamics of optically levitated dielectric disks in a gaussian standing wave beyond the harmonic approximation. Phys Rev Res. 2020;2:033437.
  • Shi H, Bhattacharya M. Optomechanics based on angular momentum exchange between light and matter. J Phys B: At Mol Opt Phys. 2016;49:153001.
  • Liu S, Li T, Yin Z. Coupling librational and translational motion of a levitated nanoparticle in an optical cavity. J Opt Soc Am B. 2017;34:C8–C13.
  • Ralph JF, Jacobs K, Coleman J. Coupling rotational and translational motion via a continuous measurement in an optomechanical sphere. Phys Rev A. 2016;94:032108.
  • Seberson T, Robicheaux F. Parametric feedback cooling of rigid body nanodumbbells in levitated optomechanics. Phys Rev A. 2019;99:013821.
  • Xu Z, Li T. Detecting Casimir torque with an optically levitated nanorod. Phys Rev A. 2017;96:33843.
  • Arvanitaki A, Geraci AA. Detecting high-frequency gravitational waves with optically levitated sensors. Phys Rev Lett. 2013;110:071105.
  • Bang J, Seberson T, Ju P, et al. 5D cooling and nonlinear dynamics of an optically levitated nanodumbbell. arXiv. 2020;2004:02384.
  • Pan D, Xu H, de Abajo F. Rotational Doppler cooling and heating. arXiv. 2019;1908:07973.
  • Seberson T, Ahn J, Bang J, et al. Optical levitation of a YIG nanoparticle and simulation of sympathetic cooling via coupling to a cold atomic gas. arXiv. 2019;1910:05371.
  • Hopper A, Barker P. A hybrid quantum system formed by trapping atoms in the near-field of a levitated nanosphere. arXiv. 2020;2005:11662.
  • Scala M, Kim MS, Morley GW, et al. Matter-wave interferometry of a levitated thermal nano-oscillator induced and probed by a spin. Phys Rev Lett. 2013;111:180403.
  • Delord T, Nicolas L, Chassagneux Y, et al. Strong coupling between a single nitrogen-vacancy spin and the rotational mode of diamonds levitating in an ion trap. Phys Rev A. 2017;96:063810.
  • Ma Y, Hoang TM, Gong M, et al. Proposal for quantum many-body simulation and torsional matter-wave interferometry with a levitated nanodiamond. Phys Rev A. 2017;96:023827.
  • Ge L, Zhao N. Torsional cooling of a nanodiamond via the interaction with the electron spin of the embedded nitrogen-vacancy center. Phys Rev A. 2018;98:043415.
  • Delord T, Huillery P, Nicolas L, et al. Spin-cooling of the motion of a trapped diamond. Nature. 2020;580:56–59.
  • Metcalf HJ. van der Straten P. Laser cooling and trapping of atoms. J Opt Soc Am B. 2003;20:887–908.
  • Eschner J, Morigi G, Schmidt-Kaler F, et al. Laser cooling of trapped ions. J Opt Soc Am B. 2003;20:1003–1015.
  • Leibfried D, Blatt R, Monroe C, et al. Quantum dynamics of single trapped ions. Rev Mod Phys. 2003;75:281–324.
  • Huillery P, Delord T, Nicolas L, et al. Spin mechanics with levitating ferromagnetic particles. Phys Rev B. 2020;101:134415.
  • Bryant Z, Stone MD, Gore J, et al. Structural transitions and elasticity from torque measurements on DNA. Nature. 2003;424:338–341.
  • de Coulomb CA. Premier mémoire sur l’électricité et le magnétisme. Histoire de l’Académie Royale des Sciences. 1785;569–577.
  • Cavendish H. Experiments to determine the density of the earth. Philos Trans Royal Soc (London). 1798;88:469–526.
  • Lebedew P. Untersuchungen über die druckkräfte des lichtes. Ann Phys. 1901;311:433–458.
  • Oroszi L, Galajda P, Kirei H, et al. Direct measurement of torque in an optical trap and its application to double-strand DNA. Phys Rev Lett. 2006;97:058301.
  • Sheinin MY, Wang MD. Twist–stretch coupling and phase transition during DNA supercoiling. Phys Chem Chem Phys. 2009;11:4800–4803.
  • Ma J, Bai L, Wang MD. Transcription under torsion. Science. 2013;340:1580.
  • Moser J, Güttinger J, Eichler A, et al. Ultrasensitive force detection with a nanotube mechanical resonator. Nat Nanotechnol. 2013;8:493–496.
  • Gieseler J, Novotny L, Quidant R. Thermal nonlinearities in a nanomechanical oscillator. Nat Phys. 2013;9:806–810.
  • Hempston D, Vovrosh J, Toroš M, et al. Force sensing with an optically levitated charged nanoparticle. Appl Phys Lett. 2017;111:133111.
  • Moore DC, Rider AD, Gratta G. Search for millicharged particles using optically levitated microspheres. Phys Rev Lett. 2014;113:251801.
  • Rider AD, Moore DC, Blakemore CP, et al. Search for screened interactions associated with dark energy below the 100 μm length scale. Phys Rev Lett. 2016;117:101101.
  • Kim P, Hauer B, Doolin C, et al. Approaching the standard quantum limit of mechanical torque sensing. Nat Commun. 2016;7:13165.
  • Losby JE, Sauer VT, Freeman MR. Recent advances in mechanical torque studies of small-scale magnetism. J Phys D: Appl Phys. 2018;51:483001.
  • Chan H, Aksyuk V, Kleiman R, et al. Quantum mechanical actuation of microelectromechanical systems by the Casimir force. Science. 2001;291:1941–1944.
  • Schäfer J, Rudolph H, Hornberger K, et al. Cooling nanorotors by elliptic coherent scattering. arXiv. 2020;2006:04090.
  • Casimir HB. On the attraction between two perfectly conducting plates. Front Phys. 1948;100:61–63.
  • Philbin TG, Leonhardt U. No quantum friction between uniformly moving plates. New J Phys. 2009;11:033035.
  • Pendry JB. Quantum friction–fact or fiction? New J Phys. 2010;12:033028.
  • Kardar M, Golestanian R. The “friction” of vacuum, and other fluctuation-induced forces. Rev Mod Phys. 1999;71:1233–1245.
  • Pendry JB. Shearing the vacuum - quantum friction. J Phys: Condens Matter. 1997;9:10301–10320.
  • Diehl R, Hebestreit E, Reimann R, et al. Optical levitation and feedback cooling of a nanoparticle at subwavelength distances from a membrane. Phys Rev A. 2018;98:013851.
  • Manjavacas A, Rodríguez-Fortuño FJ, García de Abajo FJ, et al. Lateral Casimir force on a rotating particle near a planar surface. Phys Rev Lett. 2017;118:133605.
  • Jiang QD, Wilczek F. Axial Casimir force. Phys Rev B. 2019;99:165402.
  • Ameri V, Eghbali-Arani M. Rotational synchronization of two noncontact nanoparticles. J Opt Soc Am B. 2017;34:2514–2518.
  • Sanders S, Kort-Kamp WJ, Dalvit DA, et al. Nanoscale transfer of angular momentum mediated by the Casimir torque. Commun Phys. 2019;2:71.
  • Nimmrichter S, Hornberger K. Macroscopicity of mechanical quantum superposition states. Phys Rev Lett. 2013;110:160403.
  • Arndt M, Hornberger K. Testing the limits of quantum mechanical superpositions. Nat Phys. 2014;10:271–277.
  • Schrinski B, Nimmrichter S, Stickler BA, et al. Macroscopicity of quantum mechanical superposition tests via hypothesis falsification. Phys Rev A. 2019;100:032111.
  • Kovachy T, Asenbaum P, Overstreet C, et al. Quantum superposition at the half-metre scale. Nature. 2015;528:530–533.
  • Islam R, Ma R, Preiss PM, et al. Measuring entanglement entropy in a quantum many-body system. Nature. 2015;528:77–83.
  • Fein YY, Geyer P, Zwick P, et al. Quantum superposition of molecules beyond 25 kDa. Nat Phys. 2019;15:1242–1245.
  • Shayeghi A, Rieser P, Richter G, et al. Matter-wave interference of a native polypeptide. Nat Commun. 2020;11:1447.
  • Ockeloen-Korppi C, Damskägg E, Pirkkalainen JM, et al. Stabilized entanglement of massive mechanical oscillators. Nature. 2018;556:478–482.
  • Riedinger R, Wallucks A, Marinković I, et al. Remote quantum entanglement between two micromechanical oscillators. Nature. 2018;556:473–477.
  • Libbrecht KG, Black ED. Toward quantum-limited position measurements using optically levitated microspheres. Phys Lett A. 2004;321:99–102.
  • Degen CL, Reinhard F, Cappellaro P. Quantum sensing. Rev Mod Phys. 2017;89:035002.
  • Acín A, Bloch I, Buhrman H, et al. The quantum technologies roadmap: a European community view. New J Phys. 2018;20:080201.
  • O’Connell AD, Hofheinz M, Ansmann M, et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature. 2010;464:697–703.
  • Chan J, Alegre TM, Safavi-Naeini AH, et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature. 2011;478:89–92.
  • Aspelmeyer M, Kippenberg TJ, Marquardt F. Cavity optomechanics. Rev Mod Phys. 2014;86:1391–1452.
  • Millen J, Gieseler J. Single particle thermodynamics with levitated nanoparticles. In: Binder F, Correa LA, Gogolin C, et al., editors. Thermodynamics in the Quantum Regime. Vol. 195. Cham: Springer International Publishing; 2018. p. 853–885.
  • Hebestreit E, Frimmer M, Reimann R, et al. Sensing static forces with free-falling nanoparticles. Phys Rev Lett. 2018;121:063602.
  • Zhong C, Robicheaux F. Decoherence of rotational degrees of freedom. Phys Rev A. 2016;94:052109.
  • Ni KK, Ospelkaus S, De Miranda M, et al. A high phase-space-density gas of polar molecules. Science. 2008;322:231–235.
  • Shi H, Bhattacharya M. Coupling a small torsional oscillator to large optical angular momentum. J Mod Opt. 2013;60:382–386.
  • Stickler BA, Papendell B, Kuhn S, et al. Probing macroscopic quantum superpositions with nanorotors. New J Phys. 2018;20:122001.
  • Papendell B, Stickler BA, Hornberger K. Quantum angular momentum diffusion of rigid bodies. New J Phys. 2017;19:122001.
  • Stickler BA, Schrinski B, Hornberger K. Rotational friction and diffusion of quantum rotors. Phys Rev Lett. 2018;121:40401.
  • Robinett RW. Quantum wave packet revivals. Phys Rep. 2004;392:1–119.
  • Carlesso M, Paternostro M, Ulbricht H, et al. When Cavendish meets Feynman: A quantum torsion balance for testing the quantumness of gravity. arXiv. 2017;1710:08695.
  • Schrinski B, Stickler BA, Hornberger K. Collapse-induced orientational localization of rigid rotors. J Opt Soc Am B. 2017;34:C1.
  • Collett B, Pearle P. Wavefunction collapse and random walk. Found Phys. 2003;33:1495–1541.
  • Bera S, Motwani B, Singh TP, et al. A proposal for the experimental detection of CSL induced random walk. Sci Rep. 2015;5:7664.
  • Carlesso M, Paternostro M, Ulbricht H, et al. Non-interferometric test of the continuous spontaneous localization model based on rotational optomechanics. New J Phys. 2018;20:083022.
  • Stickler BA, Papendell B, Hornberger K. Spatio-orientational decoherence of nanoparticles. Phys Rev A. 2016;94:033828.
  • Carlesso M, Naeij HR, Bassi A. A general approach toward rotational decoherence. arXiv. 2019;1912:08159.
  • Pedernales JS, Cosco F, Plenio MB. Decoherence-free rotational degrees of freedom for quantum applications. Phys Rev Lett. 2020;125:090501.
  • Kiałka F, Stickler BA, Hornberger K. Orbital angular momentum interference of trapped matter waves. Phys Rev Res. 2020;2:022030.
  • Pritchard JD, Dinkelaker AN, Arnold AS, et al. Demonstration of an inductively coupled ring trap for cold atoms. New J Phys. 2012;14:103047.
  • Helm JL, Rooney SJ, Weiss C, et al. Splitting bright matter-wave solitons on narrow potential barriers: quantum to classical transition and applications to interferometry. Phys Rev A. 2014;89:033610.
  • Bowman D, Ireland P, Bruce GD, et al. Multi-wavelength holography with a single spatial light modulator for ultracold atom experiments. Opt Express. 2015;23:8365–8372.
  • Shore BW, Dömötör P, Sadurn E, et al. Scattering of a particle with internal structure from a single slit. New J Phys. 2015;17:013046.
  • Xiao KW, Zhao N, Yin Z. Bistability and squeezing of the librational mode of an optically trapped nanoparticle. Phys Rev A. 2017;96:013837.
  • Wood AA, Hollenberg LC, Scholten RE, et al. Observation of a quantum phase from classical rotation of a single spin. Phys Rev Lett. 2020;124:020401.
  • Yin Z, Zhao N, Li T. Hybrid opto-mechanical systems with nitrogen-vacancy centers. Sci China: Phys Mech Astronomy. 2015;58:1–12.
  • Pettit RM, Ge W, Kumar P, et al. An optical tweezer phonon laser. Nat Photonics. 2019;13:402–405.
  • Cheng W, Tian T, Wang Z. Quantum beats and metrology in a rapidly rotating nitrogen-vacancy center. Eur Phys J D. 2019;73:171.
  • Gennerich A. Optical tweezers. New York, NY: Springer; 2017.
  • Kane BE. Levitated spinning graphene flakes in an electric quadrupole ion trap. Phys Rev B. 2010;82:115441.
  • Meng L, Cai F, Li F, et al. Acoustic tweezers. J Phys D: Appl Phys. 2019;52:273001.
  • Barnett SM, Allen L, Cameron RP, et al. On the natures of the spin and orbital parts of optical angular momentum. J Opt. 2016;18:064004.
  • Beijersbergen M, Coerwinkel R, Kristensen M, et al. Helical-wavefront laser beams produced with a spiral phaseplate. Opt Commun. 1994;112:321–327.
  • Curtis JE, Koss BA, Grier DG. Dynamic holographic optical tweezers. Opt Commun. 2002;207:169–175.
  • Chen M, Mazilu M, Arita Y, et al. Dynamics of microparticles trapped in a perfect vortex beam. Opt Lett. 2013;38:4919–4922.
  • Tkachenko G, Chen M, Dholakia K, et al. Is it possible to create a perfect fractional vortex beam? Optica. 2017;4:330–333.
  • Roichman Y, Grier DG. Projecting extended optical traps with shape-phase holography. Opt Lett. 2006;31:1675–1677.
  • Roichman Y, Sun B, Roichman Y, et al. Optical forces arising from phase gradients. Phys Rev Lett. 2008;100:013602.
  • Lee SH, Roichman Y, Grier DG. Optical solenoid beams. Opt Express. 2010;18:6988–6993.
  • Bowman D, Harte TL, Chardonnet V, et al. High-fidelity phase and amplitude control of phase-only computer generated holograms using conjugate gradient minimisation. Opt Express. 2017;25:11692–11700.
  • Garcés-Chávez V, Quidant R, Reece PJ, et al. Extended organization of colloidal microparticles by surface plasmon polariton excitation. Phys Rev B. 2006;73:085417.
  • Ploschner M, Mazilu M, Krauss TF, et al. Optical forces near a nanoantenna. J Nanophotonics. 2010;4:041570.
  • Ortiz-Rivero E, Prorok K, Skowickł M, et al. Single-cell biodetection by upconverting microspinners. Small. 2019;15:1904154.
  • Xie S, Pennetta R, Wang Z, et al. Sustained self-starting orbital motion of a glass-fiber “nanoengine” driven by photophoretic forces. ACS Photonics. 2019;6:3315–3320.
  • Childress L, Schmidt MP, Kashkanova AD, et al. Cavity optomechanics in a levitated helium drop. Phys Rev A. 2017;96:063842.