3,982
Views
12
CrossRef citations to date
0
Altmetric
Reviews

RF and microwave photonic temporal signal processing with Kerr micro-combs

, , ORCID Icon, ORCID Icon, & ORCID Icon
Article: 1838946 | Received 29 Jul 2020, Accepted 12 Oct 2020, Published online: 12 Nov 2020

References

  • Radic S, Moss DJ, Eggleton BJ. Nonlinear optics in communications: from crippling impairment to ultrafast tools. In: Kaminow IP, Tingye L, Willner AE, editors. Chapter 20, Optical fiber telecommunications V: components and sub-systems, 759–46. Oxford, UK: Academic Press; 2008 February.
  • Leuthold J, Koos C, Freude W. Nonlinear silicon photonics. Nat Photon. 2010;4:535–544.
  • Li L, Patki PG, Kwon YB, et al. All-optical regenerator of multi-channel signals. Nat Commun 2017;8: Article number: 884.
  • Li F, Vo, TD, Husko, C et al. All-optical XOR logic gate for 40Gb/s DPSK signals via FWM in a silicon nanowire. Opt Express. 2011;19:20364–20371.
  • Li F, Pelusi, M, Xu, DX et al. Error-free all-optical demultiplexing at 160Gb/s via FWM in a silicon nanowire. Opt Express. 2010;18:3905–3910.
  • Ji H, Galili, M, Hu, H, et al. 1.28-Tb/s demultiplexing of an OTDM DPSK data signal using a silicon waveguide. Photonics Technol Lett. 2010;22:1762–1764.
  • Monat C, Grillet, C, Corcoran, B, et al. Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics. Opt Express. 2010;18:6831–6840.
  • Corcoran B, Monat, C, Pelusi, M, et al. Optical signal processing on a silicon chip at 640Gb/s using slow-light. Opt Express. 2010;18:7770–7781.
  • Ta’eed VG, Shokooh-Saremi, M, Fu, L, et al. Integrated all-optical pulse regenerator in chalcogenide waveguides. Opt Lett. 2005;30:2900–2902.
  • Rochette M, Kutz, JN, Blows, JL, et al. Bit-error-ratio improvement with 2R optical regenerators. IEEE Photonics Technol Lett. 2005;17:908–910.
  • Ferrera M, Reimer, C, Pasquazi, A, et al. CMOS compatible integrated all-optical radio frequency spectrum analyzer. Opt Express. 2014;22:21488–21498.
  • Monat C, Grillet, C, Collins, M,et al. Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide. Nat Commun. 2014. Article:3246. DOI:https://doi.org/10.1038/ncomms4246.
  • Li F, Pelusi, M, Xu, DX, et al. All-optical wavelength conversion for 10 Gb/s DPSK signals in a silicon ring resonator. Opt Express. 2011;19:22410–22416.
  • Vo TD, Corcoran, B, Schroder, J, et al. Silicon-chip-based real-time dispersion monitoring for 640 Gbit/s DPSK signals. IEEE J Lightwave Technol. 2011;29:1790–1796.
  • Ferrera M, Park, Y, Razzari, L, et al. All-optical 1st and 2nd order integration on a chip. Opt Express. 2011;19:23153–23161.
  • Corcoran B, Vo, TD, Pelusi, MD, et al. Silicon nanowire based radio-frequency spectrum analyzer. Opt Express. 2010;18:20190–20200.
  • Corcoran B, Monat, C, Grillet, C, et al. Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides. Nat Photonics. 2009;3:206–210.
  • Moss DJ, van Driel HM, Sipe JE. Dispersion in the anisotropy of optical third-harmonic generation in silicon. Opt Lett. 1989;14:57–59.
  • Sipe JE, Moss DJ, van Driel HM. Phenomenological theory of optical second- and third-harmonic generation form cubic centrosymmetric crystals. Phys Rev B. 1987;35:1129–1141.
  • Moss DJ, Ghahramani E, Sipe JE, et al. Band-structure calculation of dispersion and anisotropy in χ→(3) for third-harmonic generation in Si, Ge, and GaAs. Phys Rev B. 1990;41:1542–1560.
  • Moss DJ, van Driel HM, Sipe JE. Third harmonic generation as a structural diagnostic of ion implanted amorphous and crystalline silicon. Appl Phy Lett. 1986;48:1150.
  • Moss DJ, Fu, L, Littler, I, et al. Ultrafast all-optical modulation via two-photon absorption in silicon-insulator waveguides. Electron Lett. 2005;41:320–321.
  • Lamont MRE, Rochette, M, Moss, DJ, et al. Two-photon absorption effects on self-phase-modulation-based 2R optical regeneration. Photonics Technol Lett. 2006;18:1185–1187.
  • Tuniz A, Brawley G, Moss DJ, et al. Two-photon absorption effects on Raman gain in single mode As2Se3 chalcogenide glass fiber. Opt Express. 2008;16:18524–18534.
  • Eggleton BJ, Luther-Davies B, Richardson K. Chalcogenide photonics. Nat Photonics. 2011;5:141–148.
  • Lee M, Grillet, C, Smith, CL, et al. Photosensitive post tuning of chalcogenide photonic crystal waveguides. Opt Express. 2007;15:1277–1285.
  • Tomljenovic-Hanic S, Steel MJ, Sterke CMD, et al. High-Q cavities in photosensitive photonic crystals. Opt Lett. 2007;32:542–544.
  • Grillet C, Monat, C, Smith, CL, et al. Nanowire coupling to photonic crystal nanocavities for single photon sources. Opt Express. 2007;15:1267–1276.
  • Ta’eed VG, Baker, NJ, Fu, L, et al. Ultrafast all-optical chalcogenide glass photonic circuits. Opt Express. 2007;15:9205–9221.
  • Freeman D, Grillet, C, Lee, MW, et al. Chalcogenide glass photonic crystal devices. Photon Electromag Cryst Struct Photon Nanostruct Fundament Appl Sci Direct. 2008;6:3–11.
  • Grillet C, Freeman, D, Luther-Davies, B,et al. Characterization and modeling of Fano resonances in chalcogenide photonic crystal membranes. Opt Express. 2006;14:369–376.
  • Ta’eed VG, Shokooh-Saremi, M, Fu, L, et al. Self-phase modulation based integrated optical regeneration in chalcogenide waveguides. IEEE J Sel Top Quantum Electron. 2006;12:360–370.
  • Shokooh-Saremi M, Ta’Eed, VG, Baker, NJ, et al. High performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer: experiment and modeling. J Opt Soc Am B (JOSA B). 2006;23:1323–1331.
  • Lamont MRE, Ta’eed, VG, Roelens, MAF, et al. Error-free wavelength conversion via cross phase modulation in 5 cm of As2S3 chalcogenide glass rib waveguide. Electron Lett. 2007;43:945–947.
  • Ikeda K, Saperstein RE, Alic N, et al. Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides. Opt Express. 2008;16:12987–12994.
  • Levy JS, Gondarenko A, Foster MA, et al. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat Photonics. 2010;4:37–40.
  • Razzari L, Duchesne D, Ferrera M, et al. CMOS-compatible integrated optical hyper-parametric oscillator. Nat Photonics. 2010;4:41–45.
  • Moss DJ, Morandotti R, Gaeta AL, et al. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat Photonics. 2013;7:597–607.
  • Ferrera M, Razzari L, Duchesne D, et al. Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures. Nat Photonics. 2008;2:737–740.
  • Pasquazi A, Peccianti M, Park Y, et al. Sub-picosecond phase-sensitive optical pulse characterization on a chip. Nat Photonics. 2011;5:618–623.
  • Duchesne D, Peccianti M, Lamont MRE, et al. Supercontinuum generation in a high index doped silica glass spiral waveguide. Opt Express. 2010;18:923–930.
  • Ferrera M, Park, Y, Razzari, L, et al. On-chip CMOS-compatible all-optical integrator. Nat Commun. 2010;1. Article 29. DOI:https://doi.org/10.1038/ncomms1028
  • Pasquazi A, Ahmad, R, Rochette, M, et al. All-optical wavelength conversion in an integrated ring resonator. Opt Express. 2010;18:3858–3863.
  • Pasquazi A, Park Y, Azana J, et al. Efficient wavelength conversion and net parametric gain via four wave mixing in a high index doped silica waveguide. Opt Express. 2010;18:7634–7641.
  • Peccianti M, Ferrera M, Razzari L, et al. Subpicosecond optical pulse compression via an integrated nonlinear chirper. Opt Express. 2010;18:7625–7633.
  • Duchesne D, Ferrera M, Razzari L, et al. Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides. Opt Express. 2009;17:1865–1870.
  • Pasquazi A, Peccianti M, Razzari L, et al. Micro-combs: A novel generation of optical sources. Phys Rep. 2018;729: 1–81. Jan 27.
  • Del’Haye P, Schliesser A, Arcizet O, et al. Optical frequency comb generation from a monolithic microresonator. Nature. 2007;450:1214–1217.
  • Peccianti M, Pasquazi, A, Park, Y, et al. Demonstration of an ultrafast nonlinear microcavity modelocked laser. Nat Commun. 2012;3:765.
  • Kues M, Reimer, C, Wetzel, B, et al. Passively modelocked laser with an ultra-narrow spectral width. Nat Photonics. 2017;11:159.
  • Pasquazi A, Caspani L, Peccianti M, et al. Self-locked optical parametric oscillation in a CMOS compatible microring resonator: a route to robust optical frequency comb generation on a chip. Opt Express. 2013;21:13333–13341.
  • Pasquazi A, Peccianti M, Little BE, et al. Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator. Opt Express. 2012;20:27355–27362.
  • Reimer C, Caspani L, Clerici M, et al. Integrated frequency comb source of heralded single photons. Opt Express. 2014;22:6535–6546.
  • Reimer C, Kues, M, Caspani, L, et al. Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip. Nat Commun. 2015;6. Article 8236. DOI:https://doi.org/10.1038/ncomms9236
  • Caspani L, Reimer C, Kues M, et al. Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated Quantum Frequency Combs. Nanophotonics. 2016;5:351–362.
  • Reimer C, Kues M, Roztocki P, et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science. 2016;351:1176–1180.
  • Kues M, Reimer, C, Roztocki, P, et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature. 2017;546:622–626.
  • Roztocki P, Kues M, Reimer C, et al. Practical system for the generation of pulsed quantum frequency combs. Opt Express. 2017;25:18940–18949.
  • Zhang Y, Kues, M, Zhang, Y, et al. Induced photon correlations through superposition of two four-wave mixing processes in integrated cavities. Laser Photon Rev. 2020;14:2000128.
  • Kues M, Reimer C, Weiner A, et al. Quantum optical micro-combs. Nat Photonics. 2019;13:170–179.
  • Reimer C, Sciara, S, Roztocki, P, et al. High-dimensional one-way quantum processing implemented on d-level cluster states. Nat Phys. 2019;15:148–153.
  • Marin-Palomo P, Kemal, JN, Karpov, M, et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature. 2017;546:274.
  • Pfeifle J, Brasch V, Lauermann M, et al. Coherent terabit communications with microresonator Kerr frequency combs. Nat Photonics. 2014;8:375–380.
  • Corcoran B, Tan, M, Xu, X, et al. Ultra-dense optical data transmission over standard fiber with a single chip source. Nat Commun. 2020;11. Article:2568. DOI:https://doi.org/10.1038/s41467-020-16265-x
  • Xu X, M. Tan, B. Corcoran, et al. Photonic perceptron based on a Kerr microcomb for scalable high speed optical neural networks. Laser Photon Rev. 2020;14. DOI:https://doi.org/10.1002/lpor.202000070.
  • X. Xu, M. Tan, B. Corcoran, J. Wu et al., “11 TeraOps photonic convolutional accelerator for optical neural networks”, in press Nature (2020).
  • Lin, X, Rivenson Y, Yardimci NT, et al. All-optical machine learning using diffractive deep neural networks. Science. 2018; 361: 1004–1008.
  • Spencer DT, Drake T, Briles T, et al. An optical-frequency synthesizer using integrated photonics. Nature. 2018;557:81–85.
  • Kippenberg TJ, Gaeta AL, Lipson M, et al. Dissipative Kerr solitons in optical microresonators. Science. 2018;361.
  • Gaeta AL, Lipson M, Kippenberg TJ. Photonic-chip-based frequency combs. Nat Photonics. 2019;13: 158–169. Mar.
  • Del’Haye P, Herr T, Gavartin E, et al. Octave spanning tunable frequency comb from a microresonator. Phys Rev Lett. 2011;107:063901.
  • Kippenberg TJ, Holzwarth R, Diddams SA. Microresonator-based optical frequency combs. Science. 2011;332(6029):555–559.
  • Herr T, Brasch V, Jost JD, et al. Temporal solitons in optical microresonators. Nat Photonics. 2014;8:145–152.
  • Ferdous F, Miao H, Leaird DE, et al. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nat Photonics. 2011;5:770.
  • Xue X, Wang PH, Xuan Y, et al. Microresonator Kerr frequency combs with high conversion efficiency. Laser Photonics Rev. 2017;11:1600276.
  • Xue X, Qi M, Weiner AM. Normal-dispersion microresonator Kerr frequency combs. Nanophotonics. 2016;5:244–262.
  • Grillet C, Carletti L, Monat C, et al. Amorphous silicon nanowires with record high nonlinearity, FOM, and optical stability. Opt Express. 2012;20:22609–22615.
  • Choi JW, Sohn B, Chen GFR, et al. Soliton-effect optical pulse compression in CMOS-compatible ultra-silicon-rich nitride waveguides. APL Photonics. 4:2020;110804. HIBSP2019.
  • Capmany J, Novak D. Microwave photonics combines two worlds. Nat Photonics. 2007;1:319–330.
  • Yao JP. Microwave photonics. J Lightwave Technol. 2009 Jan-Feb;27: 314–335.
  • Marpaung D, Yao J, Capmany J. Integrated microwave photonics. Nat Photonics. 2019;13: 80–90. Feb.
  • Azaña J. Ultrafast analog all-optical signal processors based on fiber-grating devices. IEEE Photonics J. 2010;2:359–386.
  • Capmany J, Ortega B, Pastor D. A tutorial on microwave photonic filters. J Lightwave Technol. 2006;24:201–229.
  • Supradeepa VR, Long CM, Wu R, et al. Comb-based radiofrequency photonic filters with rapid tunability and high selectivity. Nat Photonics. 2012;6:186–194, Mar.
  • Wu J, Xu X, Nguyen TG, et al. RF photonics: an optical microcombs’ perspective. IEEE J Sel Top Quantum Electron. 2018 Jul-Aug;24:6101020.
  • Torres-Company V, Weiner AM. Optical frequency comb technology for ultra-broadband radio-frequency photonics. Laser Photonics Rev. 2014;8: 368–393. May.
  • Jiang Z, Huang CB, Leaird DE, et al. Optical arbitrary waveform processing of more than 100 spectral comb lines. Nat Photonics. 2007;1: 463–467. Aug.
  • Liu Y, Hotten J, Choudhary A, et al. All-optimized integrated RF photonic notch filter. Opt Lett. 2017;42: 4631–4634. Nov 15.
  • Liu Y, Marpaung D, Choudhary A, et al. Link performance optimization of chip-based Si3N4 microwave photonic filters. J Lightwave Technol. 2018;36:4361–4370.
  • Liu Y, Yu Y, Yuan SX, et al. Tunable megahertz bandwidth microwave photonic notch filter based on a silica microsphere cavity. Opt Lett. 2016;41: 5078–5081. Nov 1.
  • Marpaung D, Morrison B, Pagani M, et al. Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity. Optica. 2015;2: 76–83. Feb 20.
  • Choudhary A, Morrison B, Aryanfar I, et al. Advanced integrated microwave signal processing with giant on-chip Brillouin gain. J Lightwave Technol. 2017;35: 846–854. Feb 15.
  • Marpaung D, Morrison B, Pant R, et al. Frequency agile microwave photonic notch filter with anomalously high stopband rejection. Opt Lett. 2013;38: 4300–4303. Nov 1.
  • Zhu XQ, Chen FY, Peng HF, et al. Novel programmable microwave photonic filter with arbitrary filtering shape and linear phase. Opt Express. 2017;25: 9232–9243. Apr 17.
  • Jiang F, Yu Y, Tang HT, et al. Tunable bandpass microwave photonic filter with ultrahigh stopband attenuation and skirt selectivity. Opt Express. 2016;24: 18655–18663. Aug 8.
  • Zhu ZJ, Chi H, Jin T, et al. All-positive-coefficient microwave photonic filter with rectangular response. Opt Lett. 2017;42: 3012–3015. Aug 1.
  • Yu G, Zhang W, Williams JAR. High-performance microwave transversal filter using fiber Bragg grating arrays. IEEE Photonic Tech L. 2000;12: 1183–1185. Sep.
  • Leng JS, Zhang W, Williams JAR. Optimization of superstructured fiber Bragg gratings for microwave photonic filters response. IEEE Photonic Tech L. 2004;16: 1736–1738. Jul.
  • Hunter DB, Minasian RA, Krug PA. Tunable optical transversal filter based on chirped gratings. Electron Lett. 1995 Dec 7;31:2205–2207.
  • Hamidi E, Leaird DE, Weiner AM. Tunable programmable microwave photonic filters based on an optical frequency comb. IEEE J Microwave Theory. 2010 Nov;58:3269–3278.
  • Wu R, Supradeepa VR, Long CM, et al. Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms. Opt Lett. 2010 Oct 1;35:3234–3236.
  • Mansoori S, Mitchell A. RF transversal filter using an AOTF. IEEE Photonic Tech L. 2004 Mar;16:879–881.
  • Delgado-Pinar M, Mora J, Diez A, et al. Tunable and reconfigurable microwave filter by use of a Bragg-grating-based acousto-optic superlattice modulator. Opt Lett. 2005 Jan 1;30:8–10.
  • Li WZ, Yao JP. Optical frequency comb generation based on repeated frequency shifting using two Mach-Zehnder modulators and an asymmetric Mach-Zehnder interferometer. Opt Express. 2009 Dec 21;17:23712–23718.
  • Chen CH, He C, Zhu D, et al. Generation of a flat optical frequency comb based on a cascaded polarization modulator and phase modulator. Opt Lett. 2013 Aug 15;38:3137–3139.
  • Saitoh T, Kourogi M, Ohtsu M. An optical frequency synthesizer using a waveguide-type optical frequency comb generator at 1.5-mu m wavelength. IEEE Photonic Tech L. 1996 Nov;8:1543–1545.
  • Nguyen TG, Shoeiby M, Chu ST, et al. Integrated frequency comb source-based Hilbert transformer for wideband microwave photonic phase analysis. Opt Express. 2015;23:22087–22097.
  • Xue X, Xuan Y, Kim HJ, et al. Programmable single-bandpass photonic RF filter based on a Kerr comb from a microring. J Lightwave Technol. 2014;32:3557–3565.
  • Xu X, Wu J, Shoeiby M, et al. Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source. APL Photonics. 2017 Sep;2:096104.
  • Xu X, Tan M, Wu J, et al. Microcomb-based photonic RF signal processing. IEEE Photonics Technol Lett. 1854-1857;31:2019.
  • Xu X, Wu J, Nguyen TG, et al. Advanced RF and microwave functions based on an integrated optical frequency comb source. Opt Express. 2018;26:2569–2583.
  • Xue X, Xuan Y, Bao C, et al. Microcomb-based true-time-delay network for microwave beamforming with arbitrary beam pattern control. J Lightwave Technol. 2018;36:2312–2321.
  • Xu X, Wu J, Nguyen TG, et al. Broadband RF channelizer based on an integrated optical frequency Kerr comb source. J Lightwave Technol. 2018;36:4519–4526.
  • Xu X, Wu J, Jia L, et al. Continuously tunable orthogonally polarized RF optical single sideband generator based on micro-ring resonators. J Opt. 2018;20:115701.
  • Xu X, Wu J, Tan M, et al. Orthogonally polarized RF optical single sideband generation and dual-channel equalization based on an integrated microring resonator. J Lightwave Technol. 2018;36:4808–4818.
  • Xu X, Wu J, Nguyen TG, et al. Photonic microwave true time delays for phased array antennas using a 49 GHz FSR integrated optical micro-comb source. Photonics Res. 2018;6:B30–B36.
  • Xu X, Tan M, Wu J, Nguyen TG, et al. Advanced adaptive photonic RF filters with 80 taps based on an integrated optical micro-comb source. J Lightwave Technol. 2019;37:1288–1295.
  • Liang W, Eliyahu D, Ilchenko VS, et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat Commun. 2015;6:7957.
  • Liu J, Lucas E, Raja AS, et al. Photonic microwave generation in the X-and K-band using integrated soliton microcombs. Nat Photonics. 2020;14:1–6.
  • Xu X, Wu J, Tan M, et al. Broadband microwave frequency conversion based on an integrated optical micro-comb source”. J Lightwave Technol. 2020;38:332–338.
  • Tan M, Xu X, Wu J, et al. Photonic RF and microwave filters based on 49GHz and 200GHz Kerr microcombs. Opt Commun. 2020. Feb. 22. 465: Article: 125563:1-11.
  • Xu X, Tan M, Wu J, et al. Broadband photonic RF channelizer with 90 channels based on a soliton crystal microcomb. J Lightwave Technol. 2020;38:5116–5121.
  • Xu X, Tan M, Wu J, et al. Photonic RF and microwave integrator with soliton crystal microcombs. IEEE Trans Circuits Syst II Express Briefs. 2020. Early Access. DOI:https://doi.org/10.1109/TCSII.2020.2995682.
  • Xu X, Tan M, Wu J, et al. Photonic RF phase-encoded signal generation with a microcomb source. IEEE J Lightwave Technol. 2020;38:1722–1727.
  • Xu X, Tan M, Wu J, et al. High performance RF filters via bandwidth scaling with Kerr micro-combs. APL Photonics. 2019;4:026102.
  • Tan M, Xu X, Corcoran B, et al. Microwave and RF photonic fractional Hilbert transformer based on a 50 GHz Kerr micro-comb. J Lightwave Technol. 2019;37:6097–6104.
  • Tan M, Xu X, Corcoran B, et al. RF and microwave fractional differentiator based on photonics. IEEE Trans Circuits Syst Express Brief. 2020. Early Access. DOI:https://doi.org/10.1109/TCSII.2020.2965158.
  • Tan M, Xu X, Boes A, et al. Photonic RF arbitrary waveform generator based on a soliton crystal micro-comb source. J Lightwave Technol. 2020 July;38:6221–6226. DOI:https://doi.org/10.1109/JLT.2020.3009655.
  • Cole DC, Lamb ES, Del’Haye P, et al. Soliton crystals in Kerr resonators. Nat Photonics. 2017 Oct;11:671–676.
  • Wang W, Lu Z, Zhang W, et al. Robust soliton crystals in a thermally controlled microresonator. Opt Lett. 2018;43:2002–2005.
  • Stern B, Ji X, Okawachi Y, et al. Battery-operated integrated frequency comb generator. Nature. 2018;562:401.
  • Xue X, Xuan Y, Liu Y, et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat Photonics. 2015;9:594.
  • Bao H, Cooper A, Rowley M, et al. Laser cavity-soliton microcombs. Nat Photonics. 2019;13:384–389.
  • Xue X, Zheng X, Zhou B. Super-efficient temporal solitons in mutually coupled optical cavities. Nat Photonics 2019;13: 616-622. May.
  • Zhou H, Geng Y, Cui W, et al. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light Sci Appl. 2019;8:50.
  • Bao H, Olivieri L, Rowley M, et al. Turing patterns in a fibre laser with a nested micro-resonator: robust and controllable micro-comb generation. Phys Rev Res. 2020;2:023395.
  • Lauro LD, Li J, Moss DJ, et al. Parametric control of thermal self-pulsation in micro-cavities. Opt Lett. 2017 Aug;42:3407–3410.
  • Bao H, Cooper A, Chu ST, et al. Type-II micro-comb generation in a filter-driven four wave mixing laser. Photonics Res. 2018;6:B67–B73, May
  • Shen B, Chang L, Liu J, et al. Integrated turnkey soliton microcombs. Nature. 2020;582:365–369.
  • Moss DJ, Lamont M, Mclaughlin S, et al. Tunable dispersion and dispersion slope compensators for 10Gb/s using all-pass multicavity etalons. IEEE Photonics Technol Lett. 2003;15:730.
  • Lunardi LM, Moss D, Chandrasekhar S, et al. Tunable dispersion compensators based on multi-cavity all-pass etalons for 40Gb/s systems. IEEE J Lightwave Technol. 2002;20:2136.
  • Moss DJ, McLaughlin S, Randall G, et al. Multichannel tunable dispersion compensation using all-pass multicavity etalons. paper TuT2 Optical Fiber Communications Conference, Anaheim, vol.1, pp. 132–133. Washington, DC, USA: Postconference Technical Digest (IEEE Cat. No.02CH37339). Opt Soc. America. Part; 2002.
  • Moss DJ, Lunardi L, Lamont M, et al. Tunable dispersion compensation at 10 Gb/s and 40 Gb/s using multicavity all-pass etalons. Optical Fiber Communications Conference (OFC) paper TuD1, 162, 162–163. Atlanta, GA, Washington, DC, USA: Postconference Digest (IEEE Cat. No.03CH37403). Opt. Soc. America. Part vol.1, 2003; 2003 March.
  • Hahn SL. Transforms and applications handbook. Poularikas AD, Ed., 3rded. Boca Raton, FL: CRC Press; 2010, ch. 7.
  • Moura L. Radio frequency implementation of the fractional Hilbert transform with transversal filters. Circ Syst Signal Process. 2007 Jun;26:407–417.
  • Lohmann AW, Mendlovic D, Zalevsky Z. Fractional Hilbert transform. Opt Lett. 1996 Feb;21:281–283.
  • Davis JA, McNamara DE, Cottrell DM. Analysis of the fractional Hilbert transform. Appl Opt. 1998 Oct;37:6911–6913.
  • Holdenried CD, Haslett JW, Davies B. A fully integrated 10-Gb/s tapped delay Hilbert transformer for optical single sideband. IEEE Microw Wireless Compon Lett. 2005;15: 303–305. May.
  • Emami H, Sarkhosh N, Bui LA, et al. Wideband RF photonic in-phase and quadrature-phase generation. Opt Lett. 2008 Jan 15;33:98–100.
  • Li M, Yao JP. All-fiber temporal photonic fractional Hilbert transformer based on a directly designed fiber Bragg grating. Opt Lett. 2010 Jan;35:223–225.
  • Li M, Yao JP. Experimental demonstration of a wideband photonic temporal Hilbert transformer based on a single fiber Bragg grating. IEEE Photon Technol Lett. 2010 Nov;22:1559–1561.
  • Asghari MH, Azana J. All-optical Hilbert transformer based on a single phase-shifted fiber Bragg grating: design and analysis. Opt Lett. 2009 Feb;34:334–336.
  • Yang T, Dong J, Liu L, et al. Experimental observation of optical differentiation and optical Hilbert transformation using a single SOI microdisk chip. Sci Rep. 2014;4:3960.
  • Liu W, Li M, Guzzon RS, et al. A fully reconfigurable photonic integrated signal processor. Nat Photonics. 2016;10:190–196.
  • Zhang Z, Sima C, Liu B, et al. Wideband and continuously-tunable fractional photonic Hilbert transformer based on a single high-birefringence planar Bragg grating. Opt Express. 2018;26:20450–20458.
  • Zeng F, Yao J. An approach to ultrawideband pulse generation and distribution over optical fiber. IEEE Photonics Technol Lett. 2006 Apr;18:823–825.
  • Pan S, Yao J. Optical generation of polarity- and shape-switchable ultrawideband pulses using a chirped intensity modulator and a first-order asymmetric Mach-Zehnder interferometer. Opt Lett. 2009 May;34:1312–1314.
  • Yu Y, Dong J, Li X, et al. Ultra-wideband generation based on cascaded Mach-zehnder modulators. IEEE Photonics Technol Lett. 2011;23: 1754-1756. Dec;23.
  • Zhuang L, Khan MR, Beeker W, et al. Novel microwave photonic fractional Hilbert transformer using a ring resonator-based optical all-pass filter. Opt Exp. 2012 Nov;20:26499–26510.
  • Sima C, Gates JC, Holmes C, et al. Terahertz bandwidth photonic Hilbert transformers based on synthesized planar Bragg grating fabrication. Opt Lett. 2013 Sep;38:3448–3451.
  • Shahoei H, Dumais P, Yao JP. Continuously tunable photonic fractional Hilbert transformer using a high-contrast germanium-doped silica-on-silicon microring resonator. Opt Lett. 2014;39: 2778–2781. May.
  • Li Z, Han Y, Chi H, et al. A continuously tunable microwave fractional Hilbert transformer based on a nonuniformly spaced photonic microwave delay-line filter. J Lightwave Technol. 2012 Jun;30:1948–1953.
  • Li Z, Chi H, Zhang X, et al. A continuously tunable microwave fractional Hilbert transformer based on a photonic microwave delay-line filter using a polarization modulator. IEEE Photon Technol Lett. 2011 Nov;23:1694–1696.
  • Blanch AO, Mora J, Capmany J, et al. Tunable radio-frequency photonic filter based on an actively mode-locked fiber laser. Opt Lett. 2006 Mar;31:709–711.
  • Supradeepa VR, Long CM, Wu R, et al. Comb-based radiofrequency photonic filters with rapid tunability and high selectivity. Nat Photonics. 2012 Mar;6:186–194.
  • Company VT, Weiner AM. Optical frequency comb technology for ultra-broadband radio-frequency photonics. Laser Photon Rev. 2014;8:368–393.
  • Li F, Park Y, Azaña J. Linear characterization of optical pulses with durations ranging from the picosecond to the nanosecond regime using ultrafast photonic differentiation. J Lightwave Technol. 2009;27:4623–4633.
  • Pan S, Yao J. Optical generation of polarity- and shape-switchable ultrawideband pulses using a chirped intensity modulator and a first-order asymmetric Mach-Zehnder interferometer. Opt Lett. 2009;34:1312–1314.
  • Li X, Dong J, Yu Y, et al. A tunable microwave photonic filter based on an all-optical differentiator. IEEE Photon Technol Lett. 2011 Mar;23:308–310.
  • Han Y, Li Z, Yao J. A microwave bandpass differentiator implemented based on a nonuniformly-spaced photonic microwave delay-line filter. J Lightwave Technol. 2011 Nov;29:3470–3475.
  • Ashrafi R, Azaña J. Figure of merit for photonic differentiators. Opt Exp. 2012 Jan;20:2626–2639.
  • Zeng F, Yao J. Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator. IEEE Photon Technol Lett. 2006 Oct;18:2062–2064.
  • Li P, Chen H, Chen M, et al. Gigabit/s photonic generation, modulation, and transmission for a reconfigurable impulse radio UWB over fiber system. IEEE Photon Technol Lett. 2012 Jun;4:805–816.
  • Yu Y, Jiang F, Tang H, et al. Reconfigurable photonic temporal differentiator based on a dual-drive Mach-Zehnder modulator. Opt Exp. 2016;24: 11739–11748. May.
  • Velanas P, Bogris A, Argyris A, et al. High-speed all-optical first- and second-order differentiators based on cross-phase modulation in fibers. J Lightwave Technol. 2008 Sep;26:3269–3276.
  • Xu J, Zhang X, Dong J, et al. All-optical differentiator based on cross-gain modulation in semiconductor optical amplifier. Opt Lett. 2007 Oct;32:3029–3031.
  • Xu J, Zhang X, Dong J, et al. High-speed all-optical differentiator based on a semiconductor optical amplifier and an optical filter. Opt Lett. 2007 Jul;32:1872–1874.
  • Wang F, Dong J, Xu E, et al. All-optical UWB generation and modulation using SOA-XPM effect and DWDM-based multi-channel frequency discrimination. Opt Exp. 2010 Nov;18:24588–24594.
  • Moreno V, Rius M, Mora J, et al. Integrable high order UWB pulse photonic generator based on cross phase modulation in a SOA-MZI. Opt Exp. 2013 Sep;21:22911–22917.
  • Wang Q, Yao J. Switchable optical UWB monocycle and doublet generation using a reconfigurable photonic microwave delay-line filter. Opt Exp. 2007 Oct;15:14667–14672.
  • Bolea M, Mora J, Ortega B, et al. Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats. Opt Exp. 2009 Mar;17:5023–50332.
  • Mathieu B, Melchior P, Oustaloup A, et al. Fractional differentiation for edge detection. Signal Process. 2003 Nov;83:2421–2432.
  • Oustaloup A, Levron F, Mathieu B, et al. Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans Circ Syst I Fundament Theory Appl. 2000 Jan;47:25–39.
  • Suh M-G, Yang Q, Yang K, et al. Microresonator soliton dual-comb spectroscopy. Science. 2016 Nov;354:600–603.
  • Slavik R, Park Y, Kulishov M, et al. Ultrafast all-optical differentiator. Opt Exp. 2006;14:10699.
  • Liu F, Wang T, Qiang L, et al. Compact optical temporal differentiator based on silicon microring. Opt Exp. 2008;16:15880.
  • Zhang L, Wu J, Yin X, et al. A high-speed second-order photonic differentiator based on two-stage silicon self-coupled optical waveguide. IEEE Photon J. 2014;6:7900505.
  • McClellan J, Parks TW, Rabiner L. A computer program for designing optimum FIR linear phase digital filters. Trans Audio Electroacous. 1973 Dec;21:506–526.
  • Williamson RC, Esman RD. RF Photonics. J Lightwave Technol. 2008;26: 1145–1153. May.
  • Park Y, Ahn T-J, Dai Y, et al. All-optical temporal integration of ultrafast pulse waveforms. Opt Express. 2008;16:17817–17825.
  • Slavík R, Park Y, Ayotte N, et al. Photonic temporal integrator for all-optical computing. Opt Express. 2008;16:18202–18214.
  • Asghari MH, Park Y, Azaña J. New design for photonic temporal integration with combined high processing speed and long operation time window. Opt Express. 2011;19:425–435.
  • Liu W, Li M, Guzzon RS, et al. A photonic temporal integrator with an ultra-long integration time window based on an InP-InGaAsP integrated ring resonator. J Lightwave Technol. 2014;32:3654–3659.
  • Park Y, Azaña J. Ultrafast photonic intensity integrator. Opt Lett. 2009;34:1156–1158.
  • Malacarne A, Ashrafi R, Li M, et al. Single-shot photonic time-intensity integration based on a time-spectrum convolution system. Opt Lett. 2012;37:1355–1357.
  • Zhang J, Yao J. Microwave photonic integrator based on a multichannel fiber Bragg grating. Opt Lett. 2016;41:273–276.
  • Suh M-G, Vahala KJ. Soliton microcomb range measurement. Science. 2018;359:884–887.
  • Urick VJ. Considerations and application opportunities for integrated microwave photonics. Paper M2B.1, IEEE/OSA Optical Fiber Communications (OFC) Conference. Anaheim, CA. 20–22 March 2016. DOI:https://doi.org/10.1364/OFC.2016.M2B.1.
  • Metcalf AJ, Kim HJ, Leaird DE, et al. Integrated line-by-line optical pulse shaper for high-fidelity and rapidly reconfigurable RF-filtering. Opt Express. 2016;24:23925–23940.
  • Sahin E, Ooi KJA, Png CE, et al. Large, scalable dispersion engineering using cladding-modulated Bragg gratings on a silicon chip. Appl Phys Lett. 2017;110:161113.
  • Li M, Ling J, He Y, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature. 2018;562:101.
  • Hu J, He J, Liu J, et al. Reconfigurable radiofrequency filters based on versatile soliton microcombs. Nat Commun. 2020;11:1–9.