10,114
Views
35
CrossRef citations to date
0
Altmetric
Reviews

High-energy few-cycle pulses: post-compression techniques

ORCID Icon, & ORCID Icon
Article: 1845795 | Received 31 Jul 2020, Accepted 29 Oct 2020, Published online: 30 Nov 2020

References

  • Brabec T, Krausz F. Intense few-cycle laser fields: frontiers of nonlinear optics. Rev Mod Phys. 2000;72:545–41.
  • Chang Z, Corkum PB, Leone SR. Attosecond optics and technology: progress to date and future prospects [Invited]. J Opt Soc Am B. 2016;33:1081–1097.
  • Li J, Lu J, Chew A, et al. Attosecond science based on high harmonic generation from gases and solids. Nat Commun. 2020;11:2748.
  • Kobayashi T. Development of ultrashort pulse lasers for ultrafast spectroscopy. Photonics. 2018;5:11.
  • Krausz F, Ivanov M. Attosecond physics. Rev Mod Phys. 2009;81:163–234.
  • Corkum PB, Krausz F. Attosecond science. Nat Phys. 2007;3:381–387.
  • Lépine F, Ivanov MY, Vrakking MJJ. Attosecond molecular dynamics: fact or fiction? Nat Photon. 2014;8:195–204.
  • Nisoli M, Decleva P, Calegari F, et al. Attosecond electron dynamics in molecules. Chem Rev. 2017;117:10760–10825.
  • Young L, Ueda K, Gühr M, et al. Roadmap of ultrafast x-ray atomic and molecular physics. J Phys B At Mol Opt Phys. 2018;51:032003.
  • Leone SR, McCurdy CW, Burgdörfer J, et al. What will it take to observe processes in ‘real time’? Nat Photon. 2014;8:162–166.
  • Dombi P, Papa Z, Vogelsang J, et al. Strong-field nano-optics. Rev Mod Phys. 2020;92:025003.
  • Siegrist F, Gessner JA, Ossiander M, et al. Light-wave dynamic control of magnetism. Nature. 2019;571:240–244.
  • Calegari F, Ayuso D, Trabattoni A, et al. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses. Science. 2014;346:336–339.
  • Guénot D, Gustas D, Vernier A, et al. Relativistic electron beams driven by kHz single-cycle light pulses. Nat Photon. 2017;11:293–296.
  • Schwab MB, Savert A, Jackel O, et al. Few-cycle optical probe-pulse for investigation of relativistic laser-plasma interactions. Appl Phys Lett. 2013;103:191118.
  • Champeney DC. Fourier transforms and their physical applications. Academic Press London; 1973. Appendix F.
  • Giordmaine J, Duguay M, Hansen J. Compression of optical pulses. IEEE J Quantum Electron. 1968;4:252–255.
  • Duguay MA, Hansen JW. Compression of pulses from a mode‐locked He–Ne laser. Appl Phys Lett. 1969;14:14–16.
  • Fisher RA, Kelley PL, Gustafson TK. Subpicosecond pulse generation using optical Kerr effect. Appl Phys Lett. 1969;14:140–143.
  • Treacy EB. Compression of picosecond light pulses. Phys Lett A. 1968;28:34–35.
  • Treacy EB. Optical pulse compression with diffraction gratings. IEEE J Quantum Electron. 1969;QE 5:454–458.
  • Laubereau A. External frequency modulation and compression of picosecond pulses. Phys Lett A. 1969;29:539–540.
  • Szipocs R, Ferencz K, Spielmann C, et al. Chirped multilayer coatings for broad-band dispersion control in femtosecond lasers. Opt Lett. 1994;19:201–203.
  • Szipocs R, Kohazi-Kis A. Theory and design of chirped dielectric laser mirrors. Appl Phys B. 1997;65:115–135.
  • Matuschek N, Kartner FX, Keller U. Theory of double-chirped mirrors. IEEE J Sel Top Quantum Electron. 1998;4:197–208.
  • Miranda M, Penedones J, Guo C, et al. Fast iterative retrieval algorithm for ultrashort pulse characterization using dispersion scans. J Opt Soc Am B. 2017;34:190–197.
  • Timmers H, Kobayashi Y, Chang KF, et al. Generating high-contrast, near single-cycle waveforms with third-order dispersion compensation. Opt Lett. 2017;42:811–814.
  • Yamane K, Zhang Z, Oka K, et al. Optical pulse compression to 3.4fs in the monocycle region by feedback phase compensation. Opt Lett. 2003;28:2258–2260.
  • Matsubara E, Yamane K, Sekikawa T, et al. Generation of 2.6 fs optical pulses using induced-phase modulation in a gas-filled hollow fiber. J Opt Soc Am B. 2007;24:985–989.
  • Wirth A, Hassan MT, Grguras I, et al. Synthesized light transients. Science. 2011;334:195–200.
  • Hassan MT, Luu TT, Moulet A, et al. Optical attosecond pulses and tracking the nonlinear response of bound electrons. Nature. 2016;530:66–70.
  • Bejot P, Schmidt BE, Kasparian J, et al. Mechanism of hollow-core-fiber infrared-supercontinuum compression with bulk material. Phys Rev A. 2010;81:63828.
  • Mandel L. Interpretation of instantaneous frequencies. Am J Phys. 1974;42:840–846.
  • Zhavoronkov N, Korn G. Generation of single intense short optical pulses by ultrafast molecular phase modulation. Phys Rev Lett. 2002;88:203901.
  • Theberge F, Liu W, Luo Q, et al. Ultrabroadband continuum generated in air (down to 230 nm) using ultrashort and intense laser pulses. Appl Phys B. 2005;80:221–225.
  • Khodakovskiy NG, Kalashnikov MP, Pajer V, et al. Generation of few-cycle laser pulses with high temporal contrast via nonlinear elliptical polarisation rotation in a hollow fibre compressor. Laser Phys Lett. 2019;16:095001.
  • Pinault SC, Potasek MJ. Frequency broadening by self-phase modulation in optical fibers. J Opt Soc Am B. 1985;2:1318–1319.
  • Diels J-C, Rudolph W. Ultrashort laser pulse phenomena. Academic Press; Amsterdam; 2006, pp. 205-207.
  • Fibich G, Gaeta AL. Critical power for self-focusing in bulk media and in hollow waveguides. Opt Lett. 2000;25:335–337.
  • Tempea G, Brabec T. Nonlinear source for the generation of high-energy few-cycle optical pulses. Opt Lett. 1998;23:1286–1288.
  • Keldysh LV. Ionization in field of a strong electromagnetic wave. Sov Phys JETP. 1965;20:1307–1314.
  • Perelomov AM, Popov VS, Terentev MV. Ionization of atoms in an alternating electric field. Sov Phys JETP. 1966;23:924–934.
  • Ammosov MV, Delone NB, Krainov VP. Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Sov Phys JETP. 1986;64:1191–1194.
  • Yudin G, Ivanov M. Nonadiabatic tunnel ionization: looking inside a laser cycle. Phys Rev A. 2001;64:013409.
  • Kelley PL. Self-focusing of optical beams. Phys Rev Lett. 1965;15:1005–1008.
  • Simmons WW, Hunt JT, Warren WE. Light-propagation through large laser systems. IEEE J Quantum Electron. 1981;17:1727–1744.
  • Rolland C, Corkum PB. Compression of high-power optical pulses. J Opt Soc Am B. 1988;5:641–647.
  • Mevel E, Tcherbakoff O, Salin E, et al. Extracavity compression technique for high-energy femtosecond pulses. J Opt Soc Am B. 2003;20:105–108.
  • Mourou G, Mironov S, Khazanov E, et al. Single cycle thin film compressor opening the door to Zeptosecond-Exawatt physics. The European Physical Journal Special Topics. 2014;223:1181–1188.
  • Khazanov EA, Mironov SY, Mourou GA. Nonlinear compression of high-power laser pulses: compression after compressor approach. Phys Usp. 2019;62:1096–1124.
  • Ginzburg V, Yakovlev I, Zuev A, et al. Fivefold compression of 250-TW laser pulses. Phys Rev A. 2020;101:013829.
  • Mironov SY, Fourmaux S, Lassonde P, et al. “Thin plate compression of a sub-petawatt Ti: salaser pulses. Appl Phys Lett. 2020;116:241101.
  • Lu C-H, Tsou Y-J, Chen H-Y, et al. Generation of intense supercontinuum in condensed media. Optica. 2014;1:400-406.
  • Cheng Y-C, Lu C-H, Lin -Y-Y, et al. Supercontinuum generation in a multi-plate medium. Opt Express. 2016;24:7224–7231.
  • He P, Liu Y, Zhao K, et al. High-efficiency supercontinuum generation in solid thin plates at 0.1TW level. Opt Lett. 2017;42:474–477.
  • Lu C-H, Wu W-H, Kuo S-H, et al. Greater than 50 times compression of 1030 nm Yb: kGWlaser pulses to single-cycle duration. Opt Express. 2019;27:15638–15648.
  • Lu C-H, Witting T, Husakou A, et al. Sub-4 fs laser pulses at high average power and high repetition rate from an all-solid-state setup. Opt Express. 2018;26:8941–8956.
  • Herriott D, Kogelnik H, Kompfner R. Off-axis paths in spherical mirror interferometers. Appl Opt. 1964;3:523–526.
  • Sennaroglu A, Fujimoto JG. Design criteria for Herriott-type multi-pass cavities for ultrashort pulse lasers. Opt Express. 2003;11:1106–1113.
  • Kowalevicz AM, Sennaroglu A, Zare AT, et al. Design principles of q-preserving multipass-cavity femtosecond lasers. J Opt Soc Am B. 2006;23:760–770.
  • Schulte J, Sartorius T, Weitenberg J, et al. Nonlinear pulse compression in a multi-pass cell. Opt Lett. 2016;41:4511–4514.
  • Hanna M, Délen X, Lavenu L, et al. Nonlinear temporal compression in multipass cells: theory. Opt Soc Am B. 2017;34:1340–1347.
  • Weitenberg J, Vernaleken A, Schulte J, et al. Multi-pass-cell-based nonlinear pulse compression to 115 fs at 7.5 µJ pulse energy and 300 W average power. Opt Express. 2017;25:20502–20510.
  • Fritsch K, Poetzlberger M, Pervak V, et al. All-solid-state multipass spectral broadening to sub-20 fs. Opt Lett. 2018;43:4643–4646.
  • Ueffing M, Reiger S, Kaumanns M, et al. Nonlinear pulse compression in a gas-filled multipass cell. Opt Lett. 2018;43:2070–2073.
  • Lavenu L, Natile M, Guichard F, et al. Nonlinear pulse compression based on a gas-filled multipass cell. Opt Lett. 2018;43:2252–2255.
  • Kaumanns M, Pervak V, Kormin D, et al. Multipass spectral broadening of 18mJ pulses compressible from 1.3ps to 41fs. Opt Lett. 2018;43:5877–5880.
  • Russbueldt P, Weitenberg J, Schulte J, et al. Scalable 30fs laser source with 530W average power. Opt Lett. 2019;44:5222–5225.
  • Balla P, Bin Wahid A, Sytcevich I, et al. Postcompression of picosecond pulses into the few-cycle regime. Opt Lett. 2020;45:2572–2575.
  • Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media. Phys Rep. 2007;441:47–189.
  • Berge L, Skupin S, Nuter R, et al. Ultrashort filaments of light in weakly ionized, optically transparent media. Rep Prog Phys. 2007;70:1633–1713.
  • Gaeta AL. Catastrophic collapse of ultrashort pulses. Phys Rev Lett. 2000;84:3582–3585.
  • Dubietis A, Tamosauskas G, Suminas R, et al. Ultrafast supercontinuum generation in bulk condensed media. Lith J Phys. 2017;57:113-157.
  • Hauri CP, Kornelis W, Helbing FW, et al. Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation. Appl Phys B. 2004;79:673–677.
  • Hauri CP, Guandalini A, Eckle P, et al. Generation of intense few-cycle laser pulses through filamentation - parameter dependence. Opt Express. 2005;13:7541–7547.
  • Zaïr A, Guandalini A, Schapper F, et al. “patio-temporal characterization of few-cycle pulses obtained by filamentation. Opt Express. 2007;15:5394–5405.
  • Akozbek N, Trushin SA, Baltuska A, et al. Extending the supercontinuum spectrum down to 200 nm with few-cycle pulses. New J Phys. 2006;8:177.
  • Goulielmakis E, Koehler S, Reiter B, et al. Ultrabroadband, coherent light source based on self-channeling of few-cycle pulses in helium. Opt Lett. 2008;33:1407–1409.
  • Steingrube DS, Schulz E, Binhammer T, et al. Generation of high-order harmonics with ultra-short pulses from filamentation. Opt Express. 2009;17:16177–16182.
  • Steingrube DS, Kretschmar M, Hoff D, et al. Sub-1.5-cycle pulses from a single filament. Opt Express. 2012;20:24049–24058.
  • Heyl CM, Coudert-Alteirac H, Miranda M, et al. Scale-invariant nonlinear optics in gases. Optica. 2016;3:75-81.
  • Zheltikov AM. Laser-induced filaments in the mid-infrared. J Phys B At Mol Opt Phys. 2017;50:092001.
  • Schmidt C, Pertot Y, Balciunas T, et al. High-order harmonic source spanning up to the oxygen K-edge based on filamentation pulse compression. Opt Express. 2018;26:11834–11842.
  • Mitrofanov AV, Voronin AA, Sidorov-Biryukov DA, et al. Subterawatt few-cycle mid-infrared pulses from a single filament. Optica. 2016;3:299–302.
  • Skupin S, Stibenz G, Berge L, et al. Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations. Phys Rev E. 2006;74:56604.
  • Agrawal GP. Nonlinear fiber optics. Academic Press; Amsterdam; 2013 Chp. 5.
  • Stolen RH, Lin C. Self-phase-modulation in silica optical fibers. Phys Rev A. 1978;17:1448–1453.
  • Fujimoto JG, Weiner AM, Ippen EP. Generation and measurement of optical pulses as short as 16 fs. Appl Phys Lett. 1984;44:832–834.
  • Halbout JM, Grischkowsky D. 12‐fs ultrashort optical pulse compression at a high repetition rate. Appl Phys Lett. 1984;45:1281–1283.
  • Knox WH, Fork RL, Downer MC, et al. Optical pulse-compression to 8 fs at A 5-kHz repetition rate. Appl Phys Lett. 1985;46:1120–1121.
  • Fork RL, Cruz CHB, Becker PC, et al. Compression of optical pulses to 6 femtoseconds by using cubic phase compensation. Opt Lett. 1987;12:483–485.
  • Fork RL, Martinez OE, Gordon JP. Negative dispersion using pairs of Prisms. Opt Lett. 1984;9:150–152.
  • Bor Z, Racz B. Group-velocity dispersion in prisms and its application to pulse-compression and traveling-wave excitation. Opt Commun. 1985;54:165–170.
  • Vozzi C, Nisoli M, Sansone G, et al. Optimal spectral broadening in hollow-fiber compressor systems. Appl Phys B. 2005;80:285–289.
  • Böhle F, Kretschmar M, Jullien A, et al. Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers. Laser Phys Lett. 2014;11:095401.
  • Knight JC, Birks TA, Russell PS, et al. All-silica single-mode optical fiber with photonic crystal cladding. Opt Lett. 1996;21:1547–1549.
  • Cregan RF, Mangan BJ, Knight JC, et al. Single-mode photonic band gap guidance of light in air. Science. 1999;285:1537–1539.
  • Benabid F, Knight JC, Antonopoulos G, et al. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science. 2002;298:399-402.
  • Pryamikov AD, Biriukov AS, Kosolapov AF, et al. Demonstration of a waveguide regime for a silica hollow - core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm. Opt Express. 2011;19:1441–1448.
  • Debord B, Amsanpally A, Chafer M, et al. Ultralow transmission loss in inhibited-coupling guiding hollow fibers. Optica. 2017;4:209–217.
  • Maurel M, Chafer M, Amsanpally A, et al. Optimized inhibited-coupling Kagome fibers at Yb-Nd: YAG(8.5 dB/km) and Ti: sa(30 dB/km) ranges. Opt Lett. 2018;43:1598–1601.
  • Debord B, Amsanpally A, Alharbi M, et al. Ultra-large core size hypocycloid-shape inhibited coupling Kagome fibers for high-energy laser beam handling. J Lightwave Technol. 2015;33:3630–3634.
  • Emaury F, Saraceno CJ, Debord B, et al. Efficient spectral broadening in the 100-W average power regime using gas-filled kagome HC-PCF and pulse compression. Opt Lett. 2014;39:6843–6846.
  • Köttig F, Tani F, Biersach CM, et al. Generation of microjoule pulses in the deep ultraviolet at megahertz repetition rates. Optica. 2017;4:1272–1276.
  • Mak KF, Seidel M, Pronin O, et al. Compressing µJ-level pulses from 250fs to sub-10fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages. Opt Lett. 2015;40:1238–1241.
  • Hädrich S, Krebs M, Hoffmann A, et al. Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources. Light Sci Appl. 2015;4:e320–e320.
  • Guichard F, Giree A, Zaouter Y, et al. Nonlinear compression of high energy fiber amplifier pulses in air-filled hypocycloid-core Kagome fiber. Opt Express. 2015;23:7416–7423.
  • Köttig F, Schade D, Koehler JR, et al. Efficient single-cycle pulse compression of an ytterbium fiber laser at 10 MHz repetition rate. Opt Express. 2020;28:9099–9110.
  • Markos C, Travers JC, Abdolvand A, et al. Hybrid photonic-crystal fiber. Rev Mod Phys. 2017;89:045003.
  • Nisoli M, DeSilvestri S, Svelto O. Generation of high energy 10 fs pulses by a new pulse compression technique. Appl Phys Lett. 1996;68:2793–2795.
  • Marcatili EAJ, Schmeltzer RA. Hollow metallic and dielectric waveguides for long distance optical transmission and lasers. Bell Syst Tech J. 1964;43:1783–1809.
  • Abrams RL. Coupling losses in hollow waveguide laser resonators. IEEE J Quantum Electron. 1972;QE 8:838–843.
  • De Silvestri S, Nisoli M, Sansone G, et al. Few-cycle pulses by external compression. Topics Appl Phys. 2004;95:137–177.
  • Nisoli M, De Silvestri S, Svelto O, et al. Compression of high-energy laser pulses below 5 fs. Opt Lett. 1997;22:522–524.
  • Sartania S, Cheng Z, Lenzner M, et al. Generation of 0.1-TW 5-fs optical pulses at a 1-kHz repetition rate. Opt Lett. 1997;22:1562–1564.
  • Cerullo G, Silvestri SD, Nisoli M, et al. Few-optical-cycle laser pulses: from high peak power to frequency tunability. IEEE J Sel Top Quantum Electron. 2000;6:948–958.
  • Farkas G, Toth C. Proposal for attosecond light-pulse generation using laser-induced multiple-harmonic conversion processes in rare-gases. Phys Lett A. 1992;168:447–450.
  • Corkum PB. Plasma perspective on strong-field multiphoton ionization. Phys Rev Lett. 1993;71:1994–1997.
  • Hentschel M, Kienberger R, Spielmann C, et al. Attosecond metrology. Nature. 2001;414:509–513.
  • Cavalieri AL, Goulielmakis E, Horvath B, et al. Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua. New J Phys. 2007;9:242.
  • Schweinberger W, Sommer A, Bothschafter E, et al. Waveform-controlled near-single-cycle milli-joule laser pulses generate sub-10 nm extreme ultraviolet continua. Opt Lett. 2012;37:3573–3575.
  • Ghimire S, Shan B, Wang C, et al. High-energy 6.2-fs pulses for attosecond pulse generation. Laser Phys. 2005;15:838–842.
  • Chen XW, Jullien A, Malvache A, et al. Generation of 4.3 fs, 1 mJ laser pulses via compression of circularly polarized pulses in a gas-filled hollow-core fiber. Opt Lett. 2009;34:1588–1590.
  • Anderson A, Lücking F, Prikoszovits T, et al. Multi-mJ carrier envelope phase stabilized few-cycle pulses generated by a tabletop laser system. Appl Phys B. 2011;103:531–536.
  • Hädrich S, Rothhardt J, Eidam T, et al. High energy ultrashort pulses via hollow fiber compression of a fiber chirped pulse amplification system. Opt Express. 2009;17:3913–3922.
  • Lavenu L, Natile M, Guichard F, et al. High-energy few-cycle Yb-doped fiber amplifier source based on a single nonlinear compression stage. Opt Express. 2017;25:7530–7537.
  • Hädrich S, Rothhardt J, Demmler S, et al. Scalability of components for kW-level average power few-cycle lasers. Appl Opt. 2016;55:1636–1640.
  • Rothhardt J, Hädrich S, Carstens H, et al. 1 MHz repetition rate hollow fiber pulse compression to sub-100-fs duration at 100 W average power. Opt Lett. 2011;36:4605–4607.
  • Hädrich S, Klenke A, Hoffmann A, et al. Nonlinear compression to sub-30-fs, 0.5 mJ pulses at 135 W of average power. Opt Lett. 2013;38:3866–3869.
  • Rothhardt J, Hädrich S, Klenke A, et al. 53 W average power few-cycle fiber laser system generating soft x rays up to the water window. Opt Lett. 2014;39:5224–5227.
  • Hädrich S, Kienel M, Müller M, et al. Energetic sub-2-cycle laser with 216 W average power. Opt Lett. 2016;41:4332–4335.
  • Giguere M, Schmidt BE, Shiner AD, et al. Pulse compression of submillijoule few-optical-cycle infrared laser pulses using chirped mirrors. Opt Lett. 2009;34:1894–1896.
  • Schmidt BE, Bejot P, Giguere M, et al. Compression of 1.8 mu m laser pulses to sub two optical cycles with bulk material. Appl Phys Lett. 2010;96:121109.
  • Schmidt BE, Shiner AD, Lassonde P, et al. CEP stable 1.6 cycle laser pulses at 1.8 µm. Opt Express. 2011;19:6858–6864.
  • Gebhardt M, Gaida C, Stutzki F, et al. High average power nonlinear compression to 4 GW, sub-50 fs pulses at 2 µm wavelength. Opt Lett. 2017;42:747–750.
  • Durfee CG, Backus S, Kapteyn HC, et al. Intense 8-fs pulse generation in the deep ultraviolet. Opt Lett. 1999;24:697–699.
  • Klein-Wiele JH, Nagy T, Simon P. Hollow-fiber pulse compressor for KrF lasers. Appl Phys B. 2006;82:567–570.
  • Nisoli M, Stagira S, De Silvestri S, et al. Toward a terawatt-scale sub-10-fs laser technology. IEEE J Sel Top Quantum Electron. 1998;4:414–420.
  • Andriukaitis G, Kartashov D, Lorenc D, et al. Hollow-fiber compression of 6 mJ pulses from a continuous-wave diode-pumped single-stage Yb,Na: caF2chirped pulse amplifier. Opt Lett. 2011;36:1914-1916.
  • Nagy T, Forster M, Simon P. Flexible hollow fiber for pulse compressors. Appl Opt. 2008;47:3264–3268.
  • Suda A, Hatayama M, Nagasaka K, et al. Generation of sub-10-fs, 5-mJ-optical pulses using a hollow fiber with a pressure gradient. Appl Phys Lett. 2005;86:111116.
  • Nurhuda M, Suda A, Midorikawa K, et al. Propagation dynamics of femtosecond laser pulses in a hollow fiber filled with argon: constant gas pressure versus differential gas pressure. J Opt Soc Am B. 2003;20:2002–2011.
  • Nagy T, Pervak V, Simon P. Optimal pulse compression in long hollow fibers. Opt Lett. 2011;36:4422–4424.
  • Sung JH, Park JY, Imran T, et al. Generation of 0.2-TW 5.5-fs optical pulses at 1 kHz using a differentially pumped hollow-fiber chirped-mirror compressor. Appl Phys B. 2006;82:5–8.
  • Park J, Lee J-H, Nam CH. Generation of 1.5 cycle 0.3 TW laser pulses using a hollow-fiber pulse compressor. Opt Lett. 2009;34:2342-2344.
  • Oishi Y, Suda A, Midorikawa K, et al. Sub-10 fs, multimillijoule laser system. Rev Sci Instrum. 2005;76:93114.
  • Bohman S, Suda A, Kaku M, et al. Generation of 5 fs, 0.5 TW pulses focusable to relativistic intensities at 1 kHz. Opt Express. 2008;16:10684–10689.
  • Bohman S, Suda A, Kanai T, et al. Generation of 5.0 fs, 5.0 mJ pulses at 1kHz using hollow-fiber pulse compression. Opt Lett. 2010;35:1887–1889.
  • Okell WA, Witting T, Fabris D, et al. Carrier-envelope phase stability of hollow fibers used for high-energy few-cycle pulse generation. Opt Lett. 2013;38:3918–3921.
  • Lücking F, Trabattoni A, Anumula S, et al. In situ measurement of nonlinear carrier-envelope phase changes in hollow fiber compression. Opt Lett. 2014;39:2302-2305.
  • Robinson JS, Haworth CA, Teng H, et al. The generation of intense, transform-limited laser pulses with tunable duration from 6 to 30 fs in a differentially pumped hollow fibre. Appl Phys B. 2006;85:525–529.
  • Ouillé M, Vernier A, Böhle F, et al. Relativistic-intensity near-single-cycle light waveforms at kHz repetition rate. Light Sci Appl. 2020;9:47.
  • Nagy T, Kretschmar M, Vrakking MJJ, et al. Generation of above-terawatt 1.5-cycle visible pulses at 1 kHz by post-compression in a hollow fiber. Opt Lett. 2020;45:3313–3316.
  • Dutin CF, Dubrouil A, Petit S, et al. Post-compression of high-energy femtosecond pulses using gas ionization. Opt Lett. 2010;35:253–255.
  • Auguste T, Gobert O, Dutin CF, et al. Application of optical-field-ionization-induced spectral broadening in helium gas to the postcompression of high-energy femtosecond laser pulses. J Opt Soc Am B. 2012;29:1277-1286.
  • Auguste T, Fourcade Dutin C, Dubrouil A, et al. High-energy femtosecond laser pulse compression in single- and multi-ionization regime of rare gases: experiment versus theory. Appl Phys B. 2013;111:75–87.
  • Hort O, Dubrouil A, Cabasse A, et al. Postcompression of high-energy terawatt-level femtosecond pulses and application to high-order harmonic generation. J Opt Soc Am B. 2015;32:1055–1062.
  • Nurhuda M, Suda A, Bohman S, et al. Optical pulse compression of ultrashort laser pulses in an argon-filled planar waveguide. Phys Rev Lett. 2006;97:153902.
  • Chen JF, Suda A, Takahashi EJ, et al. Compression of intense ultrashort laser pulses in a gas-filled planar waveguide. Opt Lett. 2008;33:2992–2994.
  • Akturk S, Arnold CL, Zhou B, et al. High-energy ultrashort laser pulse compression in hollow planar waveguides. Opt Lett. 2009;34:1462–1464.
  • Arnold CL, Zhou B, Akturk S, et al. Pulse compression with planar hollow waveguides: a pathway towards relativistic intensity with table-top lasers. New J Phys. 2010;12:73015.
  • Chen S, Jarnac A, Houard A, et al. Compression of high-energy ultrashort laser pulses through an argon-filled tapered planar waveguide. J Opt Soc Am B. 2011;28:1009-1012.
  • Jarnac A, Brizuela F, Heyl CM, et al. Compression of TW class laser pulses in a planar hollow waveguide for applications in strong-field physics. Eur Phys J D. 2014;68:373.
  • Klenke A, Kienel M, Eidam T, et al. Divided-pulse nonlinear compression. Opt Lett. 2013;38:4593–4596.
  • Guichard F, Zaouter Y, Hanna M, et al. Energy scaling of a nonlinear compression setup using passive coherent combining. Opt Lett. 2013;38:4437–4440.
  • Jacqmin H, Jullien A, Mercier B, et al. Passive coherent combining of CEP-stable few-cycle pulses from a temporally divided hollow fiber compressor. Opt Lett. 2015;40:709-712.
  • Jacqmin H, Jullien A, Mercier B, et al. Temporal pulse division in hollow fiber compressors. J Opt Soc Am B. 2015;32:1901–1909.
  • Klenke A, Hädrich S, Kienel M, et al. Coherent combination of spectrally broadened femtosecond pulses for nonlinear compression. Opt Lett. 2014;39:3520–3522.
  • Wahlstrand JK, Cheng YH, Chen YH, et al. Optical Nonlinearity in Ar and N2 near the Ionization Threshold. Phys Rev Lett. 2011;107:103901.
  • Li C, Rishad KPM, Horak P, et al. Spectral broadening and temporal compression of  ̴ 100 fs pulses in air-filled hollow core capillary fibers. Opt Express. 2014;22:1143–1151.
  • Haddad E, Safaei R, Leblanc A, et al. Molecular gases for pulse compression in hollow core fibers. Opt Express. 2018;26:25426–25436.
  • Fan G, Safaei R, Kwon O, et al. High energy redshifted and enhanced spectral broadening by molecular alignment. Opt Lett. 2020;45:3013–3016.
  • Beetar JE, Nrisimhamurty M, Truong T-C, et al. Multioctave supercontinuum generation and frequency conversion based on rotational nonlinearity. Sci Adv. 2020;6:eabb5375.
  • Wagner NL, Gibson EA, Popmintchev T, et al. Self-compression of ultrashort pulses through ionization-induced spatiotemporal reshaping. Phys Rev Lett. 2004;93:173902.
  • Couairon A, Biegert J, Hauri CP, et al. Self-compression of ultra-short laser pulses down to one optical cycle by filamentation. J Mod Opt. 2006;53:75–85.
  • Serebryannikov EE, Goulielmakis E, Zheltikov AM. Generation of supercontinuum compressible to single-cycle pulse widths in an ionizing gas. New J Phys. 2008;10:093001.
  • Hauri CP, Trisorio A, Merano M, et al. Generation of high-fidelity, down-chirped sub-10 fs mJ pulses through filamentation for driving relativistic laser-matter interactions at 1 kHz. Appl Phys Lett. 2006;89:151125.
  • Stibenz G, Zhavoronkov N, Steinmeyer G. Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament. Opt Lett. 2006;31:274–276.
  • Schulz E, Binhammer T, Steingrube DS, et al. “Intense few-cycle laser pulses from self-compression in a self-guiding filament. Appl Phys B. 2009;95:269–272.
  • Trushin SA, Kosma K, Fuss W, et al. Sub-10-fs supercontinuum radiation generated by filamentation of few-cycle 800 nm pulses in argon. Opt Lett. 2007;32:2432–2434.
  • Schulz E, Steingrube DS, Binhammer T, et al. Tracking spectral shapes and temporal dynamics along a femtosecond filament. Opt Express. 2011;19:19495–19507.
  • Kretschmar M, Brée C, Nagy T, et al. Direct observation of pulse dynamics and self-compression along a femtosecond filament. Opt Express. 2014;22:22905–22916.
  • Hauri CP, Lopez-Martens RB, Blaga CI, et al. Intense self-compressed, self-phase-stabilized few-cycle pulses at 2 μm from an optical filament. Opt Lett. 2007;32:868–870.
  • Jargot G, Daher N, Lavenu L, et al. Self-compression in a multipass cell. Opt Lett. 2018;43:5643–5646.
  • Shumakova V, Malevich P, Ališauskas S, et al. Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk. Nat Commun. 2016;7:12877.
  • Mitrofanov AV, Voronin AA, Rozhko MV, et al. Self-compression of high-peak-power mid-infrared pulses in anomalously dispersive air. Optica. 2017;4:1405–1408.
  • Shumakova V, Ališauskas S, Malevich P, et al. Chirp-controlled filamentation and formation of light bullets in the mid-IR. Opt Lett. 2019;44:2173–2176.
  • Im S-J, Husakou A, Herrmann J. Guiding properties and dispersion control of kagome lattice hollow-core photonic crystal fibers. Opt Express. 2009;17:13050–13058.
  • Im SJ, Husakou A, Herrmann J. High-power soliton-induced supercontinuum generation and tunable sub-10-fs VUV pulses from kagome-lattice HC-PCFs. Opt Express. 2010;18:5367–5374.
  • Joly NY, Nold J, Chang W, et al. Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber. Phys Rev Lett. 2011;106:203901.
  • Ermolov A, Mak KF, Frosz MH, et al. Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber. Phys Rev A. 2015;92:033821.
  • Belli F, Abdolvand A, Chang W, et al. Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber. Optica. 2015;2:292-300.
  • Ermolov A, Heide C, Dienstbier P, et al. Carrier-envelope-phase-stable soliton-based pulse compression to 4.4fs and ultraviolet generation at the 800kHz repetition rate. Opt Lett. 2019;44:5005–5008.
  • Balciunas T, Fourcade-Dutin C, Fan G, et al. A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre. Nat Commun. 2015;6:6117.
  • Elu U, Baudisch M, Pires H, et al. High average power and single-cycle pulses from a mid-IR optical parametric chirped pulse amplifier. Optica. 2017;4:1024–1029.
  • Russell PSJ, Hölzer P, Chang W, et al. Hollow-core photonic crystal fibres for gas-based nonlinear optics. Nat Photonics. 2014;8:278–286.
  • Travers JC, Grigorova TF, Brahms C, et al. High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres. Nat Photonics. 2019;13:547–554.
  • Christian B, Federico B, John CT. Resonant dispersive wave emission in hollow capillary fibers filled with pressure gradients. Opt Lett. 2020;45:4456–4459.
  • Rothhardt J, Hädrich S, Delagnes JC, et al. High average power near-infrared few-cycle lasers. Laser Photonics Rev. 2017;11:1700043.
  • Nagy T, Hädrich S, Simon P, et al. Generation of three-cycle multi-millijoule laser pulses at 318W average power. Optica. 2019;6:1423–1424.
  • Fan G, Carpeggiani PA, Tao Z, et al., “TW-peak-power post-compression of 70-mJ pulses from an Yb amplifier,” Conference on Lasers and Electro-Optics, SW4E.1 (San Jose, CA, 2019).
  • Nisoli M, Sansone G, Stagira S, et al. Ultra-broadband continuum generation by hollow-fiber cascading. Appl Phys B. 2002;75:601–604.
  • Schenkel B, Biegert J, Keller U, et al. Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum. Opt Lett. 2003;28:1987–1989.
  • Jeong Y-G, Piccoli R, Ferachou D, et al. Direct compression of 170-fs 50-cycle pulses down to 1.5 cycles with 70% transmission. Sci Rep. 2018;8:11794.
  • Lavenu L, Natile M, Guichard F, et al. High-power two-cycle ultrafast source based on hybrid nonlinear compression. Opt Express. 2019;27:1958–1967.
  • Chen B-H, Kretschmar M, Ehberger D, et al. Compression of picosecond pulses from a hin-disk laser to 30fs at 4W average power. Opt Express. 2018;26:3861–3869.
  • Nagy T, Simon P. Generation of 200-mu J, sub-25-fs deep-UV pulses using a noble-gas-filled hollow fiber. Opt Lett. 2009;34:2300–2302.
  • Cardin V, Thiré N, Beaulieu S, et al. 0.42 TW 2-cycle pulses at 1.8 μm via hollow-core fiber compression. Appl Phys Lett. 2015;107:181101.
  • Fan G, Balčiūnas T, Kanai T, et al. Hollow-core-waveguide compression of multi-millijoule CEP-stable 3.2 µm pulses. Optica. 2016;3:1308–1311.
  • Wang P, Li Y, Li W, et al. 2.6mJ/100Hz CEP-stable near-single-cycle 4µm laser based on OPCPA and hollow-core fiber compression. Opt Lett. 2018;43:2197–2200.
  • Brahms C, Belli F, Travers JC. Infrared attosecond field transients and UV to IR few-femtosecond pulses generated by high-energy soliton self-compression. Phys Rev Res. 2020;2:043037.
  • Kaumanns M, Pervak V, Kormin D, et al., “Multipass spectral broadening with tens of Millijoule pulse energy,” in 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) (Münich, Germany 2019),p. CD_9.2.