3,127
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Nucleation and growth of ultrathin Bi films

Article: 1845975 | Received 29 Sep 2020, Accepted 29 Oct 2020, Published online: 10 Nov 2020

References

  • Tavares AP, Medeiros EL, Terranova ML. Alpha decay half-life of bismuth isotopes. J Phys G Nucl Part Phys. 2005;31:129.
  • Fukaya Y. Bussei-kenkyu. A historical review of the study on Bismuth. 2008;90:537–21. (in Japanese).
  • Song TE, Wilde G, Peterlechner M. Morphology and aspect ratio of bismuth nanoparticles embedded in a zinc matrix. Appl Phys Lett. 2014;105:241902.
  • Liu Y, Allen RE. Electronic structure of the semimetals Bi and Sb. Phys Rev B. 1995;52:1566.
  • Fuseya Y, Ogata M, Fukuyama H. Transport properties and diamagnetism of dirac electrons in bismuth. J Phys Soc Jpn. 2015;84:012001.
  • Édel’man VS. Electrons in bismuth. Adv Phys. 1976;25:555.
  • Kamerlingh Onnes H, Beckman B. Comm Phys Lab Leiden. On the HALL effect and the change in the resistance in a magnetic field at low temperatures. II. The HALL-effect and the resistance increase for bismuth. 1912;129a:3.
  • Kapitza P. Proc Roy Soc A. The study of the specific resistance of bismuth crystals and its change in strong magnetic fields and some allied problems. 1928;119:369.
  • L.V. Shubnikov and W.J. de Haas, A new phenomenon in the change of resistance in a magnetic field of single crystals of bismuth, Nature 126 (1930) 500.
  • Fu L, Kane CL. Topological insulators with inversion symmetry. Phys Rev B. 2007;76:045302.
  • Lin Z, Lin CX, Wu YS, et al. Stable Nontrivial Z2Topology in Ultrathin Bi (111) Films: A First-Principles Study. Phys Rev Lett. 2011;107:136805.
  • Steinfeld JI. Molecules and radiation. Cambridge: MIT Press; 1985.
  • Moore JE. The birth of topological insulators. Nature. 2010;464:194.
  • Hasan MZ, Kane CL. Colloquium: topological insulators. Rev Mod Phys. 2010;82:3045.
  • Hofmann P. The surfaces of bismuth: structural and electronic properties. Prog Surf Sci. 2006;81:191.
  • Möonig H, Sun J, Koroteev M, et al. Structure of the (111) surface of bismuth: LEED analysis and first-principles calculations. Phys Rev B. 2005;72:085410.
  • Ast CR, Höchst H. Electronic structure of a bismuth bilayer. Phys Rev B. 2003;67:113102.
  • Koroteev YM, Bihlmayer G, Chulkov EV, et al. First-principles investigation of structural and electronic properties of ultrathin Bi films. Phys Rev B. 2008;77:045428.
  • Sandomirskii VB. Quantum Size Effect in a Semimetal Film. Sov Phys. 1967;25:101.
  • Ogrin YF, Lutskii VN, Elinson MI. Observation of Quantum Size Effects in Thin Bismuth Films. JETP Lett. 1966;3:71.
  • Hirahara T. The Rashba and quantum size effects in ultrathin Bi films. J Electron Spectroscopy Related Phenomena. 2015;201:98.
  • Ito S, Feng B, Arita M, et al. Proving nontrivial topology of pure bismuth by quantum confinement. Phys Rev Lett. 2016;117:236402.
  • Bian G, Wang X, Kowalczyk PJ, et al. Survey of electronic structure of Bi and Sb thin films by first-principles calculations and photoemission measurements. J Phys Chem Solids. 2019;128:109.
  • Hirahara T, Shirai T, Hajiri T, et al. Role of quantum and surface-state effects in the bulk fermi-level position of ultrathin Bi films. Phys Rev Lett. 2015;115:106803.
  • Xiao S, Wei D, Jin X. Bi(111) thin film with insulating interior but metallic surfaces. Phys Rev Lett. 2012;109:166805.
  • Aitani M, Hirahara T, Ichinokura S, et al. In situ magnetotransport measurements in ultrathin Bi films: evidence for surface-bulk coherent transport. Phys Rev Lett. 2014;113:206802.
  • Kane CL, Mele EJ. Quantum spin hall effect in graphene. Phys Rev Lett. 2005;95:226801.
  • Murakami S. Quantum spin hall effect and enhanced magnetic response by spin-orbit coupling. Phys Rev Lett. 2006;97:236805.
  • Wada M, Murakami S, Freimuth F, et al. Localized edge states in two-dimensional topological insulators: ultrathin Bi films. Phys Rev B. 2011;83:121310(R).
  • Lu Y, Xu W, Zeng M, et al. Topological properties determined by atomic buckling in self-assembled ultrathin Bi(110). Nano Lett. 2015;15:80.
  • Yeom HW, Jin KH, Jhi SH. Topological fate of edge states of single Bi bilayer on Bi(111). Phys Rev B. 2016;93:075435.
  • Hirahara T, Bihlmayer G, Sakamoto Y, et al. Interfacing 2D and 3D topological insulators: Bi(111) Bilayer on Bi2Te3. Phys Rev Lett. 2011;107:166801.
  • Reis F, Li G, Dudy L, et al. Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin hall material. Science. 2017;357:287.
  • Nagase K, Kokubo I, Yamazaki S, et al. Structure and growth of Bi(110) islands on Si(111)√3x √3−B substrates. Phys Rev B. 2018;97:195418.
  • Bian G, Wang X, Miller T, et al. First-principles and spectroscopic studies of Bi(110) films: thickness-dependent Dirac modes and property oscillations. Phys Rev B. 2014;90:195409.
  • Kowalczyk PJ, Brown SA, Maerkl T, et al. Realization of symmetry-enforced two-dimensional dirac fermions in nonsymmorphic α-bismuthene. ACS Nano. 2020;14:1888.
  • Nagao T, Sadowski JT, Saito M, et al. Nanofilm allotrope and phase transformation of ultrathin Bi film on Si(111)-7×7. Phys Rev Lett. 2004;93:105501.
  • Bian G, Miller T, Chiang T-C. Electronic structure and surface-mediated metastability of Bi films on Si(111)-7×7 studied by angle-resolved photoemission spectroscopy. Phys Rev B. 2009;80:245407.
  • Yaginuma S, Nagaoka K, Nagao T, et al. Electronic structure of ultrathin bismuth films with A7 and Black-phosphorus-like structures. J Phys Soc Jpn. 2008;77:014701.
  • Sadowski JT, Nagao T, Yaginuma S, et al. Stability of the quasicubic phase in the initial stage of the growth of bismuth films on Si(111)-7×7. J Appl Phys. 2006;99:014904.
  • Kokubo I, Yoshiike Y, Nakatsuji K, et al. Ultrathin Bi(110) films on Si(111)√3x √3−B substrates. Phys Rev B. 2015;91:075429.
  • Yaginuma S, Nagao T, Sadowski JT, et al. Origin of flat morphology and high crystallinity of ultrathin bismuth films. Surf Sci. 2007;601:3593.
  • Lükermann D, Banyoudeh S, Brand C, et al. Growth of epitaxial Bi-films on vicinal Si(111). Surf Sci. 2014;621:82.
  • Hatta S, Ohtsubo Y, Miyamoto A, et al. Epitaxial growth of Bi thin films on Ge(111). Appl Surf Sci. 2009;256:1252.
  • Koitzsch C, Bovet M, Clerc F, et al. Growth of thin Bi films on W. Surf Sci. 2003;527:51.
  • Scottt SA, Kral MV, Brown SA. A crystallographic orientation transition and early stage growth characteristics of thin Bi films on HOPG. Surf Sci. 2005;587:175.
  • Kowalczyk PJ, Mahapatra O, Brown SA, et al. Electronic size effects in three-dimensional nanostructures. Nano Lett. 2013;13:43.
  • Kowalczyk PJ, Mahapatra O, McCarthy DN, et al. STM and XPS investigations of bismuth islands on HOPG. Surf Sci. 2011;605:659.
  • Kowalczyk PJ, Belic D, Mahapatra O, et al. Anisotropic oxidation of bismuth nanostructures: evidence for a thin film allotrope of bismuth. Appl Phys Lett. 2012;100:151904.
  • Sun JT, Huang H, Wong SL, et al. Energy-gap opening in a Bi(110) nanoribbon induced by edge reconstruction. Phys Rev Lett. 2012;109:246804.
  • Peng L, Xian JJ, Yang R, et al. Visualizing topological edge states of single and double bilayer Bi supported on multibilayer Bi(111) films. Phys Rev B. 2018;98:245108.
  • Sharme HR, Fournée V, Shimoda M, et al. Growth of Bi thin films on quasicrystal surfaces. Phys Rev B. 2008;78:155416.
  • Saito Y. Statistical physics of crystal growth. Singapore: World Scientific; 1996.
  • Nagase K, Ushioda R, Nakatsuji K, et al. Growth of extremely flat Bi(110) films on a Si(111)√3 × √3-B substrate. Appl Phys Exp. 2020;13:085506.
  • Yang F, Miao L, Wang ZF, et al. Spatial and energy distribution of topological edge states in single Bi(111) bilayer. Phys Rev Lett. 2012;109:016801.
  • Chen M, Peng J-P, Zhang H-M, et al. Molecular beam epitaxy of bilayer Bi(111) films on topological insulator Bi2Te3: A scanning tunneling microscopy study. Appl Phys Lett. 2012;101:081603.
  • Ogino T, Kuzumo VM, Yamazaki S, et al. Variation of the metal-insulator transition temperature of quasi-one-dimensional indium chains upon carrier doping from Si(111) substrates. J Phys: Cond Matter. 2020;32:415001.
  • Li -S-S, Ji WX, Hu SJ, et al. Tunability of the Quantum Spin Hall Effect in Bi(110) Films: effects of Electric Field and Strain Engineering. ACS Appl Matter Interf. 2017;9:21515.
  • Nakagawa T, Ohgami O, Saito Y, et al. Transition between tetramer and monomer phases driven by vacancy configuration entropy on Bi∕Ag(01). Phys Rev B. 2007;75:155409.
  • Chen Y, Gramlich MW, Hayden ST, et al. Critical role of a buried interface in the Stranski-Krastanov growth of metallic nanocrystals: quantum size effects in Ag/Si(111)-(7×7). Phys Rev Lett. 2015;114:035501.
  • Chen Y, Gramlich MW, Hayden ST, et al. In situ x-ray scattering study of Ag island growth on Si(111)7×7. Phys Rev B. 2016;94:045437.
  • Ushioda R, Shirasawa T, Nakatsuji K, et al. in preparation
  • Shirasawa T, Ohyama M, Voegeli W, et al. Interface of a Bi(001) film on Si(111)−7×7 imaged by surface x-ray diffraction. Phys Rev B. 2011;84:075411.
  • Hirahara T, Nagao T, Matsuda I, et al. Role of spin-orbit coupling and hybridization effects in the electronic structure of ultrathin Bi films. Phys Rev Lett. 2006;97:146803.
  • Hirahara T, Fukui N, Shirasawa T, et al. Atomic and electronic structure of ultrathin Bi(111) films grown on Bi2Te3(111)substrates: evidence for a strain-induced topological phase transition. Phys Rev Lett. 2012;109:227401.