3,103
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Disorder in energy materials and strategies to model it

&
Article: 1848458 | Received 25 Aug 2020, Accepted 05 Nov 2020, Published online: 07 Dec 2020

References

  • OECD environmental outlook to 2050: the consequences of inaction - Key facts and figures – OECD. can be found under n.d. 2012. https://www.oecd.org/env/indicators-modelling-outlooks/oecdenvironmentaloutlookto2050theconsequencesofinaction-keyfactsandfigures.html.
  • Walsh MP. The importance of fuel cells to address the global warming problem. J Power Sources. 1990;29:13–28.
  • Freeze JG, Kelly HR, Batista VS. Search for catalysts by inverse design: artificial intelligence, mountain climbers, and alchemists. Chem Rev. 2019;119:6595–6612.
  • Wang S, Liu G, Wang L. Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting. Chem Rev. 2019;119:5192–5247.
  • Good P, Bamber J, Halladay K, et al. Recent progress in understanding climate thresholds. Prog Phys Geogr Earth Environ. 2018;42:24–60.
  • Tanaka K, Cavalett O, Collins WJ, et al. Asserting the climate benefits of the coal-to-gas shift across temporal and spatial scales. Nat Clim Chang. 2019;9:389–396.
  • Áejka J, Nachtigall P, Centi G. New catalytic materials for energy and chemistry in transition. Chem Soc Rev. 2018;47:8066–8071.
  • Lee J, Urban A, Li X, et al. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science. 2014;343:519–522.
  • Ji H, Kitchaev DA, Lun Z, et al. Computational investigation and experimental realization of disordered high-capacity Li-Ion cathodes based on Ni redox. Chem Mater. 2019;31(7):2431–2442.
  • Avila-Paredes HJ, Zhao J, Wang S, et al. Protonic conductivity of nano-structured yttria-stabilized zirconia: dependence on grain size. J Mater Chem. 2010;20:990–994.
  • Jingfa D, Xiping Z, Enze M. Amorphous nickel—phosphorus alloy deposited on a support and its hydrogenation activity. Appl Catal. 1988;37:339–343.
  • Li H, Li H, Dai W-L, et al., XPS studies on surface electronic characteristics of Ni-B and Ni-P amorphous alloy and its correlation to their catalytic properties, n.d.
  • Brückner R. Properties and structure of vitreous silica. I. J Non Cryst Solids. 1970;5:123–175.
  • Xia GG, Yin YG, Willis WS, et al. Efficient stable catalysts for low temperature carbon monoxide oxidation. J Catal. 1999;185:91–105.
  • Niu K, Xu Y, Wang H, et al. A spongy nickel-organic CO 2 reduction photocatalyst for nearly 100% selective CO production, 2017.
  • Hutchings GJ, Desmartin-Chomel A, Olier R, et al. Role of the product in the transformation of a catalyst to its active state. Nature. 1994;368:41–45.
  • Bergmann A, Martinez-Moreno E, Teschner D, et al. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nat Commun. 2015;6:1–9.
  • Hemminger JC, Sarrao J, Crabtree G, et al. Challenges at the frontiers of matter and energy: transformative opportunities for discovery science. 2015. U.S. Department of Energy, Office of Scientific and Technical Information, USA.
  • Drabold DA, Estreicher SK. Theory of defects in semiconductors (Frontmatter pages). New York city (US): Springer; 2007.
  • Freysoldt C, Grabowski B, Hickel T, et al. First-principles calculations for point defects in solids. Rev. Mod. Phys. 2014;86:253–305.
  • Spitaler J, Estreicher SK. Perspectives on the theory of defects. Front. Mater. 2018;5:70.
  • Kim J, Lee B, Kim H, et al. Redesign of Li2MP2O7 (M = Fe or Mn) by tuning the Li diffusion in rechargeable battery electrodes. Chem. Mater. 2016;28:6894–6899.
  • Hu J, Xiao Y, Tang H, et al. Tuning Li-Ion diffusion in α-LiMn1-xFexPO4 nanocrystals by antisite defects and embedded β-phase for advanced Li-Ion batteries. Nano Lett. 2017;17:4934–4940.
  • Heenen HH, Scheurer C, Reuter K. Implications of occupational disorder on ion mobility in Li4Ti5O12 battery materials. Nano Lett. 2017;17:3884–3888.
  • Hong L, Yang K, Tang M. A mechanism of defect-enhanced phase transformation kinetics in lithium iron phosphate olivine. npj Comput. Mater. 2019;5:1–9.
  • Xiong H, Yildirim H, Shevchenko EV, et al. Self-improving anode for lithium-ion batteries based on amorphous to cubic phase transition in TiO2 nanotubes. J Phys Chem C. 2012;116:3181–3187.
  • Xiong H, Yildirim H, Podsiadlo P, et al. Compositional tuning of structural stability of lithiated cubic titania via a vacancy-filling mechanism under high pressure. Phys Rev Lett. 2013;110:078304.
  • Rettie AJE, Lee HC, Marshall LG, et al. Combined charge carrier transport and photoelectrochemical characterization of BiVO4 single crystals: Intrinsic behavior of a complex metal oxide. J Am Chem Soc. 2013;135:11389–11396.
  • Seabold JA, Zhu K, Neale NR. Efficient solar photoelectrolysis by nanoporous Mo:BiVO4 through controlled electron transport. Phys Chem Chem Phys. 2014;16:1121–1131.
  • Jo WJ, Jang JW, Kong KJ, et al. Phosphate doping into monoclinic BiVO4 for enhanced photoelectrochemical water oxidation activity. Angew Chemie - Int Ed. 2012;51:3147–3151.
  • Jang JW, Friedrich D, Müller S, et al. Enhancing Charge Carrier Lifetime in Metal Oxide Photoelectrodes through Mild Hydrogen Treatment. Adv Energy Mater. 2017;7. DOI:https://doi.org/10.1002/aenm.201701536.
  • Yuan W, Zhang F, Wu Y, et al. Point-defect-rich carbon sheets as the high-activity catalyst toward oxygen reduction and hydrogen evolution. Catalysts. 2019;9:386.
  • Fei H, Dong J, Arellano-Jiménez MJ, et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat Commun. 2015;6:1–8.
  • Jung E, Shin H, Lee BH, et al. Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production. Nat Mater. 2020;19:436–442.
  • Rhodes D, Chae SH, Ribeiro-Palau R, et al. Disorder in van der Waals heterostructures of 2D materials. Nat Mater. 2019;18:541–549.
  • Chen P, Zhang N, Wang S, et al. Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis. Proc Natl Acad Sci U. S. A. 2019;116:6635–6640.
  • Song K, Schmid H, Srot V, et al. Cerium reduction at the interface between ceria and yttria-stabilised zirconia and implications for interfacial oxygen non-stoichiometry. APL Mater. 2014;2:032104.
  • Dubau L, Nelayah J, Moldovan S, et al. Defects do catalysis: CO monolayer oxidation and oxygen reduction reaction on hollow PtNi/C nanoparticles. ACS Catal. 2016;6:4673–4684.
  • Polfus JM, Toyoura K, Oba F, et al. Defect chemistry of a BaZrO3 Σ3 (111) grain boundary by first principles calculations and space–charge theory. Phys Chem Chem Phys. 2012;14:12339–12346.
  • Zhou LJ, Hou ZF, Wu LM, et al. First-principles studies of lithium adsorption and diffusion on graphene with grain boundaries. J Phys Chem C. 2014;118:28055–28062.
  • Ferrando R, Jellinek J, Johnston RL. Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev. 2008; 108:845–910.
  • Ku JH, Ryu JH, Kim SH, et al. Reversible lithium storage with high mobility at structural defects in amorphous molybdenum dioxide electrode. Adv Funct Mater. 2012;22:3658–3664.
  • Kebede MA, Palaniyandy N, Ramadan RM, et al. The electrical and electrochemical properties of graphene nanoplatelets modified 75V2O5–25P2O5 glass as a promising anode material for lithium ion battery. J Alloys Compd. 2018;735:445–453.
  • HONMA T, TOGASHI T, ITO N, et al. Fabrication of Na2FeP2O7 glass-ceramics for sodium ion battery. J Ceram Soc Jpn. 2012;120:344–346.
  • Kang B, Ceder G. Battery materials for ultrafast charging and discharging. Nature. 2009;458:190–193.
  • Baranchugov V, Markevich E, Pollak E, et al. Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes. Electrochem commun. 2007;9:796–800.
  • Hasannaeimi V, Mukherjee S. Noble-metal based metallic glasses as highly catalytic materials for hydrogen oxidation reaction in fuel cells. Sci Rep. 2019;9:1–8.
  • Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev. 1965;140:A1133.
  • Perdew JP, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B. 1992;45:13244–13249.
  • Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77:3865–3868.
  • Parker WD, Wilkins JW, Hennig RG. Accuracy of quantum Monte Carlo methods for point defects in solids. Phys Status Solidi Basic Res. 2011;248:267–274.
  • Needs RJ. Quantum Monte Carlo techniques and defects in semiconductors. Top Appl Phys. 2006;104:141–164.
  • Messmer RP, Watkins GD. Linear combination of atomic orbital-molecular orbital treatment of the deep defect level in a semiconductor: nitrogen in diamond. Phys Rev Lett. 1970;25:656–659.
  • Ogut, S., Kim, H. & James R., C. Ab initio cluster calculations for vacancies in bulk Si. Phys. Rev. B. 1997; 56, R11353-R11356.
  • Louie SG, Schlüter M, Chelikowsky JR, et al. Self-consistent electronic states for reconstructed Si vacancy models. Phys Rev B. 1976;13:1654–1663.
  • Zhang SB, Northrup JE. Chemical potential dependence of defect formation energies in GaAs: application to Ga self-diffusion. Phys. Rev. Lett. 1991;67:2339–2342.
  • Van De Walle CG, Blöchl PE. First-principles calculations of hyperfine parameters. Phys Rev B. 1993;47:4244–4255.
  • Fazzio A, Caldas MJ, Leite JR. Point defects in covalent semiconductors: a molecular cluster model. Int. J. Quantum Chem. 1979;16:349–361.
  • Estreicher SK. Hydrogen-related defects in crystalline semiconductors: a theorist’s perspective. Mater Sci Eng R. 1995;14:319–412.
  • Cartling B, Roos B, Wahlgren U. A model for self-consistent cluster calculations of the electronic structure of doped semiconductors by means of the SCF Xα scattered wave method. Chem. Phys. Lett. 1973;21:380–384.
  • Cartling BG. Localized description of the electronic structure of covalent semiconductors. II. Imperfect crystals. J. Phys. C Solid State Phys. 1975;8:3183–3193.
  • Ghuman KK, Hoch LB, Szymanski P, et al. Photoexcited Surface Frustrated Lewis Pairs for Heterogeneous Photocatalytic CO2 Reduction. J Am Chem Soc. 2016;138:1206–1214.
  • Payne MC, Teter MP, Allan DC, et al. Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients. Rev Mod Phys. 1992;64:1045–1097.
  • Leslie M, Gillian MJ. The energy and elastic dipole tensor of defects in ionic crystals calculated by the supercell method. J Physics C Solid State Phys. 1985;18:973–982.
  • Makov G, Shah R, Payne M. Periodic boundary conditions in ab initio calculations. II. Brillouin-zone sampling for aperiodic systems. Phys Rev B - Condens Matter Mater Phys. 1996;53:15513–15517.
  • Bruneval F, Crocombette JP. Ab initio formation volume of charged defects. Phy Rev B. 2012;86:140103.
  • Varvenne C, Bruneval F, Marinica M-C, et al. Point defect modeling in materials: coupling ab initio and elasticity approaches. Phys Soc. 2013;88. DOI:https://doi.org/10.1103/PhysRevB.88.134102i.
  • Nieminen RM. Supercell methods for defect calculations. Top Appl Phys. 2006;104:29–68.
  • Liechtenstein AI, Anisimov VI, Zaanen J. Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators. Phy Rev B. 1995;52:R5467.
  • Finazzi E, Di Valentin C, Pacchioni G, et al. Excess electron states in reduced bulk anatase TiO2: comparison of standard GGA, GGA+U, and hybrid DFT calculations. J Chem Phys. 2008;129:154113.
  • Goyal A, Gorai P, Peng H, et al. A computational framework for automation of point defect calculations. Comput Mater Sci. 2017;130:1–9.
  • Yim K, Lee J, Lee D, et al. Property database for single-element doping in ZnO obtained by automated first-principles calculations. Sci Rep. 2017;7:40907.
  • Péan E, Vidal J, Jobic S, et al. Presentation of the PyDEF post-treatment Python software to compute publishable charts for defect energy formation. Chem Phys Lett. 2017;17:124–130.
  • Broberg D, Medasani B, Zimmermann NER, et al. PyCDT: a Python toolkit for modeling point defects in semiconductors and insulators. Comput Phys Commun. 2018;226:165–179.
  • Jain A, Ong SP, Hautier G, et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 2013;1:011002.
  • Yang B, Tewary VK. Green’s function-based multiscale modeling of defects in a semi-infinite silicon substrate. Int J Solids Struct. 2005;42:4722–4737.
  • Koster GF, Slater JC. Wave functions for impurity levels. Phys Rev. 1954;95:1167–1176.
  • Baraff GA, Schlüter M. New self-consistent approach to the electronic structure of localized defects in solids. Phys Rev B. 1979;19:4965–4979.
  • Lindefelt U, Zunger A. Quasi bands in Green’s-function defect models. Phys Rev B. 1981;24:5913–5931.
  • Gunnarsson O, Jepsen O, Andersen OK. Self-consistent impurity calculations in the atomic-spheres approximation. Phys Rev B. 1983;27:7144–7168.
  • Puska MJ, Jepsen O, Gunnarsson O, et al. Electronic structure and positron states at vacancies in Si and GaAs. Phys. Rev. B. 1986; 34, 2695-2705.
  • Korzhavyi PA, Abrikosov IA, Johansson B, et al. First-principles calculations of the vacancy formation energy in transition and noble metals. Phys Rev B - Condens Matter Mater Phys. 1999;59:11693–11703.
  • Tewary VK. Multiscale Green’s-function method for modeling point defects and extended defects in anisotropic solids: application to a vacancy and free surface in copper. Phys Rev B. 2004;69: 094109-1–13.
  • Chen C, Zuo Y, Ye W, et al. A critical review of machine learning of energy materials. Adv Energy Mater. 2020;10:1903242.
  • Medasani B, Gamst A, Ding H, et al. Predicting defect behavior in B2 intermetallics by merging ab initio modeling and machine learning. npj Comput Mater. 2016;2:1–10.
  • Dahl RE. A computer simulation study of tilt grain boundaries in gamma-iron and their interactions with point defects. Scr Metall. 1970;4:977–980.
  • Dahl RE, Beeler JR, Bourquin RD. Computer simulation of extended defects in metals. Comput Phys Commun. 1971;2:301–321.
  • BEELER JR Jr, DAHL RE Jr, BOURQUIN RD. Structure, energy and atom migration effects of tilt boundaries. Le J Phys Colloq. 1975;36:C4-97-C4-109.
  • Cotterill RMJ, Leffers T, Lilholt H. A molecular dynamics approach to grain boundary structure and migration. Philos Mag. 1974;30:265–275.
  • Holm EA, Olmsted DL, Foiles SM. Comparing grain boundary energies in face-centered cubic metals: al, Au, Cu and Ni. Scr Mater. 2010;63:905–908.
  • Echeverri Restrepo S, Thijsse BJ, in Mater. Res. Soc. Symp. Proc., Cambridge University Press, 2010, pp. 137–142.
  • von Alfthan S, Benedek NA, Chen L, et al. The structure of grain boundaries in strontium titanate: theory, simulation, and electron microscopy. Annu Rev Mater Res. 2010;40:557–599.
  • Chua ALS, Benedek NA, Chen L, et al. A genetic algorithm for predicting the structures of interfaces in multicomponent systems. Nat Mater. 2010;9:418–422.
  • Piana S, Gale JD. Understanding the barriers to crystal growth: dynamical simulation of the dissolution and growth of urea from aqueous solution. J. Am. Chem. Soc. 2005;127:1975–1982.
  • Hamad S, Cristol S, Catlow CRA. Simulation of the embryonic stage of ZnS formation from aqueous solution. J. Am. Chem. Soc. 2005;127:2580–2590.
  • Sayle DC, Maicaneanu SA, Slater B, et al. Exercising control over the influence of the lattice misfit on the structure of oxide–oxide thin film interfaces. J Mater Chem. 1999;9:2779–2787.
  • Sayle TXT, Catlow CRA, Maphanga RR, et al. Generating MnO2 nanoparticles using simulated amorphization and recrystallization. J Am Chem Soc. 2005;127:12828–12837.
  • Sayle TXT, Catlow CRA, Sayle DC, et al. Computer simulation of thin film heteroepitaxial ceramic interfaces using a near-coincidence-site lattice theory. Philos Mag A Phys Condens Matter, Struct Defects Mech Prop. 1993;68:565–573.
  • Sayle DC, Sayle TXT, Parker SC, et al. The stability of defects in the ceramic interfaces, and. Surf Sci. 1995;334:170–178.
  • Fisher CAJ, Matsubara *H. Philos Mag. Molecular dynamics simulations of interfaces between NiO and cubic ZrO2. 2005;85:1067–1088.
  • Ghuman KK, Gilardi E, Pergolesi D, et al. Microstructural and Electronic Properties of YSZ/CeO2 Interface via Multiscale Modelling. J Phys Chem C. 2020. DOI:https://doi.org/10.1021/acs.jpcc.0c01797
  • Sadigh B, Erhart P, Stukowski A, et al. Scalable parallel Monte Carlo algorithm for atomistic simulations of precipitation in alloys. Phys Rev B - Condens Matter Mater Phys. 2012;85:184203.
  • Romero C, Noyola J, Santiago U, et al. A new approach to the computer modeling of amorphous nanoporous structures of semiconducting and metallic materials: a review. Materials (Basel). 2010;3:467–502.
  • Huber L, Hadian R, Grabowski B, et al. A machine learning approach to model solute grain boundary segregation. npj Comput Mater. 2018;4:1–8.
  • Snow BD, Doty DD, Johnson OK. A simple approach to atomic structure characterization for machine learning of grain boundary structure-property models. Front Mater. 2019;6:120.
  • Wu X, Wang Y, He K, et al. Application of machine learning to predict grain boundary embrittlement in metals by combining bonding-breaking and atomic size effects. Materials (Basel). 2020;13:179.
  • Echeverri Restrepo S, Tamayo Giraldo S, Thijsse BJ. Using artificial neural networks to predict grain boundary energies. Comput Mater Sci. 2014;86:170–173.
  • Stachurski ZH. On structure and properties of amorphous materials. Materials (Basel). 2011;4:1564–1598.
  • (Anthony) Kelly A, Groves GW. Crystallography and crystal defects. Harlow Essex: Longmans; 1970.
  • Car R, Parrinello M. Structural, dynamical, and electronic properties of amorphous silicon: An ab initio molecular-dynamics study. Phys Rev Lett. 1988;60:204–207.
  • Kaur K, Prakash S, Goyal N, et al. Structure factor of amorphous TiO2 nanoparticle; Molecular Dynamics Study. J Non Cryst Solids. 2011;357:3399–3404.
  • Kaur K, Prakash S, Goyal N. Strained structure of differently prepared amorphous TiO2 nanoparticle: Molecular dynamics study. J Mater Res. 2011;26:2604–2611.
  • Rino J, Studart N. Structural correlations in titanium dioxide. Phys Rev B - Condens Matter Mater Phys. 1999;59:6643–6649.
  • Cai B, Drabold DA. Properties of amorphous GaN from first-principles simulations. Phys Rev B - Condens Matter Mater Phys. 2011;84:075216.
  • Kaur K, Singh CV, 2012.
  • Ghuman K, Singh CV. Effect of doping on electronic structure and photocatalytic behavior of amorphous TiO2. J Phys Condens Matter. 2013;25:475501–475512.
  • Ghuman KK. Mechanistic insights into water adsorption and dissociation on amorphous -based catalysts. Sci Technol Adv Mater. 2018;19:44–52.
  • Ghuman KK, Singh CV. Self-trapped charge carriers in defected amorphous TiO2. J Phys Chem C. 2016;120:27910–27916.
  • Li C, Wang T, Zhao ZJ, et al. Angew Chemie - Int Ed. Promoted Fixation of Molecular Nitrogen with Surface Oxygen Vacancies on Plasmon-Enhanced TiO2 Photoelectrodes. 2018;57:5278–5282.
  • Valladares AA. Glas. mater. res. prog. Wolf JC, Lange L, Eds. New York: Nova Science Publishers, Inc.; 2008. p. 61–123.
  • Mata-Pinzón Z, Valladares AA, Valladares RM, et al. Superconductivity in bismuth. A new look at an old problem. PLoS One. 2016;11. DOI:https://doi.org/10.1371/journal.pone.0147645.
  • Rodríguez I, Valladares RM, Hinojosa-Romero D, et al. Emergence of magnetism in bulk amorphous palladium. Phys Rev B. 2019;100:024422.
  • De Tafen DN, Drabold A. Realistic models of binary glasses from models of tetrahedral amorphous semiconductors. Phys Rev B - Condens Matter Mater Phys. 2003;68:165208.
  • McGreevy RL. Reverse Monte Carlo modelling. J Phys Condens Matter. 2001;13:R877–R913.
  • Playford H, Keen D, Tucker M. Local structure of crystalline and amorphous materials using reverse Monte Carlo methods. Neutron News. 2016;27:17–21.
  • Biswas P, Atta-Fynn R, Drabold DA. Reverse Monte Carlo modeling of amorphous silicon. Phys Rev B - Condens Matter Mater Phys. 2004;69:195207.
  • Deringer VL, Bernstein N, Bartók AP, et al. Realistic atomistic structure of amorphous silicon from machine-learning-driven molecular dynamics. J. Phys. Chem. Lett. 2018;9:2879–2885.
  • Behler J, Parrinello M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys Rev Lett. 2007;98:146401.
  • Bartók AP, De S, Poelking C, et al. Machine learning unifies the modeling of materials and molecules. Sci Adv. 2017;3:e1701816.
  • Bartók AP, Payne MC, Kondor R, et al. Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys Rev Lett. 2010;104:136403.
  • Shapeev AV. Moment tensor potentials: a class of systematically improvable interatomic potentials. Multiscale Model. Simul. 2016;14:1153–1173.
  • Smith JS, Isayev O, Roitberg AE. ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost. Chem Sci. 2017;8:3192–3203.
  • Deringer VL, Csányi G. Machine learning based interatomic potential for amorphous carbon. Phys Rev B. 2017;95:094203.
  • Bartók AP, Kondor R, Csányi G. On representing chemical environments. Phys Rev B - Condens Matter Mater Phys. 2013;87:184115.
  • Artrith N, Urban A, Ceder G. Constructing first-principles phase diagrams of amorphous LixSi using machine-learning-assisted sampling with an evolutionary algorithm. J Chem Phys. 2018;148:241711.
  • Onat B, Cubuk ED, Malone BD, et al. Implanted neural network potentials: application to Li-Si alloys. Phys Rev B. 2018;97:094106.