5,789
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Preparations and applications of single color centers in diamond

, , , &
Article: 1858721 | Received 22 Sep 2020, Accepted 30 Nov 2020, Published online: 03 Jan 2021

References

  • Lodahl P, Mahmoodian S, Stobbe S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev Mod Phys. 2015;87:347–29.
  • Kuhn A, Hennrich M, Rempe G. Deterministic single-photon source for distributed quantum networking. Phys Rev Lett. 2002;89:067901.
  • Lounis B, Moerner WE. Single photons on demand from a single molecule at room temperature. Nature. 2000;407:491–493.
  • Santori C, Fattal D, VučKović J, et al. Indistinguishable photons from a single-photon device. Nature. 2002;419:594–597.
  • Kurtsiefer C, Mayer S, Zarda P, et al. Stable solid-state source of single photons. Phys Rev Lett. 2002;85:290–293.
  • Englert BG. Fringe visibility and which-way information: an inequality. Phys Rev Lett. 1996;77:2154–2157.
  • Jacques V, Wu E, Grosshans F, et al. Experimental realization of wheeler’s delayed-choice gedanken experiment. Science. 2007;315:966–968.
  • Fu -C-C, Lee H-Y, Chen K, et al. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc Natl Acad Sci. 2007;104:727–732.
  • Ermakova A, Pramanik G, Cai J-M, et al. Detection of a few metallo-protein molecules using color centers in nanodiamonds. Nano Lett. 2013;13:3305–3309.
  • Tran TT, Bray K, Ford MJ, et al. Quantum emission from hexagonal boron nitride monolayers. Nat Nanotech. 2016;11:37–41.
  • Morfa AJ, Gibson BC, Karg M, et al. Single-photon emission and quantum characterization of zinc oxide defects. Nano Lett. 2012;12:949–954.
  • Jelezko F, Wrachtrup J. Single defect centres in diamond: A review. Phys Status Solidi A. 2006;203:3207–3225.
  • Collins AT, Thomaz MF, Jorge MIB. Luminescence decay time of the 1.945 eV center in type IB diamond. J Phys C Solid State Phys. 1983;16:2177–2181.
  • Beveratos A, Kuhn S, Brouri R, et al. Room temperature stable single-photon source. Eur Phys J D. 2002;18:191–196.
  • Neu E, Steinmetz D, Riedrich-Moeller J, et al. Single photon emission from silicon-vacancy centres in CVD-nano-diamonds on iridium. New J Phys. 2011;13:025012.
  • Rong Y, Ma J, Chen L, et al. Excited-state lifetime measurement of silicon vacancy centers in diamond by single-photon frequency upconversion. Laser Phys. 2018;28:055401.
  • Liu Y, Siyushev P, Rong Y, et al. Investigation of the silicon vacancy color center for quantum key distribution. Opt Express. 2015;23:32961–32967.
  • Palyanov YN, Kupriyanov IN, Borzdov YM, et al. Germanium: a new catalyst for diamond synthesis and a new optically active impurity in diamond. Sci Rep. 2015;5:14789.
  • Iwasaki T, Ishibashi F, Miyamoto Y, et al. Germanium-vacancy single color centers in diamond. Sci Rep. 2015;5:12882.
  • Siampour H, Kumar S, Davydov VA, et al. On-chip excitation of single germanium vacancies in nanodiamonds embedded in plasmonic waveguides. Light Sci Appl. 2018;7:61.
  • Iwasaki T, Miyamoto Y, Taniguchi T, et al. Tin-vacancy quantum emitters in diamond. Phys Rev Lett. 2017;119:253601.
  • Ditalia Tchernij S, Herzig T, Forneris J, et al. Single-photon-emitting optical centers in diamond fabricated upon Sn implantation. ACS Photonics. 2017;4:2580–2586.
  • Ditalia Tchernij S, Lühmann T, Herzig T, et al. Single-photon emitters in lead-implanted single-crystal diamond. ACS Photonics. 2018;5:4864–4871.
  • Trusheim ME, Wan NH, Chen KC, et al. Lead-related quantum emitters in diamond. Phys Rev B. 2019;99:075430.
  • Gaebel T, Popa I, Gruber A, et al. Stable single-photon source in the near infrared. New J Phys. 2004;6:98–104.
  • Wu E, Rabeau JR, Roger G, et al. Room temperature triggered single-photon source in the near infrared. New J Phys. 2007;9:434.
  • Aharonovich I, Castelletto S, Simpson DA, et al. Two-level ultrabright single photon emission from diamond nanocrystals. Nano Lett. 2009;9:3191–3195.
  • Aharonovich I, Castelletto S, Simpson DA, et al. Chromium single-photon emitters in diamond fabricated by ion implantation. Phys Rev B. 2010;81:121201(R).
  • Pfaff W, Hensen BJ, Bernien H, et al. Unconditional quantum teleportation between distant solid-state quantum bits. Science. 2014;345:532–535.
  • Zaitsev AM. Optical properties of diamond: a data handbook. Berlin Heidelberg: Springer-Verlag; 2001.
  • Orwa JO, Greentree AD, Aharonovich I, et al. Fabrication of single optical centres in diamond—a review. J Lumin. 2010;130:1646–1654.
  • Eaton-Magaña S, Shigley JE. Observations on CVD-grown synthetic diamonds: A review. Gems Gemol. 2016;52:222–245.
  • Shareef IA, Rubloff GW, Anderle M, et al. Subatmospheric chemical vapor deposition ozone/TEOS process for SiO2 trench filling. J Vac Sci Technol B. 1995;13:1888–1892.
  • Iakoubovskii K, Collins AT. Alignment of Ni- and Co-related centres during the growth of high-pressure–high-temperature diamond. J Phys Condens Matter. 2004;16:6897–6906.
  • Iakoubovskii K, Kiflawi I, Johnston K, et al. Annealing of vacancies and interstitials in diamond. Physica B. 2003;340–342:67–75.
  • Field JE. The properties of diamond. London: Academic Press; 1979.
  • Collins AT, Connor A, Ly C-H, et al. High-temperature annealing of optical centers in type-I diamond. J Appl Phys. 2005;97:083517.
  • Aharonovich I, Castelletto S, Simpson DA, et al. Diamond-based single-photon emitters. Rep Prog Phys. 2011;74:076501.
  • Neu E, Steinmetz D, Riedrich-Möller J, et al. Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium. New J Phys. 2011;13:025012.
  • Dragounová K, Ižák T, Alexander K, et al. Influence of substrate material on spectral properties and thermal quenching of photoluminescence of silicon vacancy colour centres in diamond thin films. J Electr Eng Technol. 2017;68:3–9.
  • Bolshakov A, Ralchenko V, Sedov V, et al. Photoluminescence of SiV centers in single crystal CVD diamond in situ doped with Si from silane. Phys Status Solidi A. 2015;212:2525–2532.
  • Trusheim ME, Li L, Laraoui A, et al. Scalable fabrication of high purity diamond nanocrystals with long-spin-coherence nitrogen vacancy centers. Nano Lett. 2014;14:32–36.
  • Ohashi K, Rosskopf T, Watanabe H, et al. Negatively charged nitrogen-vacancy centers in a 5 nm thin 12C diamond film. Nano Lett. 2013;13:4733–4738.
  • Beveratos A, Brouri R, Gacoin T, et al. Nonclassical radiation from diamond nanocrystals. Phys Rev A. 2001;64:061802.
  • Gruber A, Dräbenstedt A, Tietz C, et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science. 1997;276:2012–2014.
  • Wolf T, Neumann P, Nakamura K, et al. Subpicotesla diamond magnetometry. Phys Rev X. 2015;5:041001.
  • Liu CF, Leong WH, Xia K, et al. Ultra-sensitive hybrid diamond nanothermometer. Natl Sci Rev. arXiv:1912.12097. 2019.https://doi.org/10.1093/nsr/nwaa194.
  • Doherty MW, Struzhkin VV, Simpson DA, et al. Electronic properties and metrology applications of the diamond NV− center under pressure. Phys Rev Lett. 2014;112:047601.
  • May PW, Rego CA, Ashfold MNR, et al. CVD diamond-coated fibres. Diam Relat Mater. 1995;4:794–797.
  • Rabeau JR, Huntington ST, Greentree AD, et al. Diamond chemical-vapor deposition on optical fibers for fluorescence waveguiding. Appl Phys Lett. 2005;86:134104.
  • Balasubramanian G, Neumann P, Twitchen D, et al. Ultralong spin coherence time in isotopically engineered diamond. Nat Mater. 2009;8:383–387.
  • Ohno K, Heremans FJ, Bassett LC, et al. Engineering shallow spins in diamond with nitrogen delta-doping. Appl Phys Lett. 2012;101:082413.
  • Herzig T, Racke P, Raatz N, et al. Creation of quantum centers in silicon using spatial selective ion implantation of high lateral resolution. 22nd International Conference on Ion Implantation Technology (IIT), Würzburg, Germany; 2018.
  • Collins AT, Dahwich A. The production of vacancies in type Ib diamond. J Phys Condens Matter. 2003;15:L591–L596.
  • Kalish R, Uzan-Saguy C, Philosoph B, et al. Nitrogen doping of diamond by ion implantation. Diam Relat Mater. 1997;6:516–520.
  • Farfurnik D, Alfasi N, Masis S, et al. Enhanced concentrations of nitrogen-vacancy centers in diamond through TEM irradiation. Appl Phys Lett. 2017;111:123101.
  • McLellan CA, Myers BA, Kraemer S, et al. Patterned formation of highly coherent nitrogen-vacancy centers using a focused electron irradiation technique. Nano Lett. 2016;16:2450–2454.
  • Martin J, Wannemacher R, Teichert J, et al. Generation and detection of fluorescent color centers in diamond with submicron resolution. Appl Phys Lett. 1999;75:3096–3098.
  • Ohno K, Joseph Heremans F, de Las Casas F, et al. Three-dimensional localization of spins in diamond using 12C implantation. Appl Phys Lett. 2014;105:383.
  • Sotoma S, Yoshinari Y, Igarashi R, et al. Effective production of fluorescent nanodiamonds containing negatively-charged nitrogen-vacancy centers by ion irradiation. Diam Relat Mater. 2014;49:33–38.
  • Onoda S, Haruyama M, Teraji T, et al. New application of NV centers in CVD diamonds as a fluorescent nuclear track detector. Phys Status Solidi A. 2016;212:2641–2644.
  • Nagl A, Hemelaar SR, Schirhagl R. Improving surface and defect center chemistry of fluorescent nanodiamonds for imaging purposes—a review. Anal Bioanal Chem. 2015;407:7521–7536.
  • Evans RE, Sipahigil A, Sukachev DD, et al. Narrow-linewidth homogeneous optical emitters in diamond nanostructures via silicon ion implantation. Phys Rev A. 2016;5:044010.
  • Tamura S, Koike G, Komatsubara A, et al. Array of bright silicon-vacancy centers in diamond fabricated by low-energy focused ion beam implantation. Appl Phys Express. 2014;7:115201.
  • Raatz N, Scheuner C, Pezzagna S, et al. Investigation of Ion channeling and scattering for single-Ion implantation with high spatial resolution. Phys Status Solidi A. 2019;216:1900528.
  • Sutera D, Jelezkob F. Single-spin magnetic resonance in the nitrogen-vacancy center of diamond. Prog Nucl Magn Reson Spectrosc. 2017;98–99:50–62.
  • Trusheim ME, Pingault B, Wan NH, et al. Transform-limited photons from a coherent tin-vacancy spin in diamond. Phys Rev Lett. 2020;124:023602.
  • Dolde F, Jakobi I, Naydenov B, et al. Room-temperature entanglement between single defect spins in diamond. Nat Phys. 2013;9:139–143.
  • Haruyama M, Onoda S, Higuchi T, et al. Triple nitrogen-vacancy centre fabrication by C5N4Hn ion implantation. Nat Commun. 2019;10:2664.
  • Dumeige Y, Treussart F, Alléaume R, et al. Photo-induced creation of nitrogen-related color centers in diamond nanocrystals under femtosecond illumination. J Lumin. 2004;109:61–67.
  • Liu Y, Chen G, Song M, et al. Fabrication of nitrogen vacancy color centers by femtosecond pulse laser illumination. Opt Express. 2013;21:12843–12848.
  • Kasparian J, Rodriguez M, Mejean G, et al. White-light filaments for atmospheric analysis. Science. 2003;301:61–64.
  • Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media. Phys Rep. 2007;441:47–189.
  • York AG, Milchberg HM, Palastro JP, et al. Direct acceleration of electrons in a corrugated plasma waveguide. Phys Rev Lett. 2008;100:195001.
  • Shi L, Li W, Wang Y, et al. Generation of high-density electrons based on plasma grating induced Bragg diffraction in air. Phys Rev Lett. 2011;107:095004.
  • Shi C, Luo H, Xu Z, et al. Nitrogen-vacancy color centers in diamond fabricated by ultrafast laser nanomachining; 2019.
  • Chen YC, Salter PS, Knauer S, et al. Laser writing of coherent colour centres in diamond. Nat Photonics. 2017;11:77–80.
  • Chen YC, Griffiths B, Weng L, et al. Laser writing of individual nitrogen-vacancy defects in diamond with near-unity yield. Optica. 2019;6:662–667.
  • Stephen CJ, Green BL, Lekhai YND, et al. Deep three-dimensional solid-state qubit arrays with long-lived spin coherence. Phys Rev A. 2019;12:064005.
  • Wrachtrup J, Jelezko F, Grotz B, et al. Nitrogen-vacancy centers close to surfaces. MRS Bull. 2013;38:149–154.
  • Sotillo B, Bharadwaj V, Hadden J, et al. Visible to infrared diamond photonics enabled by focused femtosecond laser pulses. Micromachines. 2017;8:60.
  • Hadden JP, Bharadwaj V, Sotillo B, et al. Integrated waveguides and deterministically positioned nitrogen vacancy centers in diamond created by femtosecond laser writing. Opt Lett. 2017;43:3586–3589.
  • Rong Y, Cheng K, Ju Z, et al. Bright near-surface silicon vacancy centers in diamond fabricated by femtosecond laser ablation. Opt Lett. 2019;44:3793–3796.
  • Cheng HP, Gillaspy JD. Nanoscale modification of silicon surfaces via Coulomb explosion. Phys Rev B. 1997;55:2628–2636.
  • Dachraoui H, Husinsky W, Betz G. Ultra-short laser ablation of metals and semiconductors: evidence of ultra-fast Coulomb explosion. Appl Phys A-Mater. 2006;A83:333–336.
  • Rong Y, Ju Z, Ma Q, et al. Efficient generation of nitrogen vacancy centers by laser writing close to the diamond surface with a layer of silicon nanoball. New J Phys. 2020;22:013006.
  • Jaklevic RC, Lambe J, Mercereau JE, et al. Macroscopic quantum interference in superconductors. Phys Rev. 1968;140:A1628–A1637.
  • Macklin C, OBrien K, Hover D, et al. A near–quantum-limited Josephson traveling-wave parametric amplifier. Science. 2015;350:307–310.
  • Huntemann N, Sanner C, Lipphardt B, et al. Single-ion atomic clock with 3 × 10−18 systematic uncertainty. Phys Rev Lett. 2016;116:063001.
  • Baumgart I, Cai J-M, Retzker A, et al. Ultrasensitive magnetometer using a single atom. Phys Rev Lett. 2016;116:240801.
  • Taylor JM, Cappellaro P, Childress L, et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nat Phys. 2008;4:810–816.
  • Degen CL. Scanning magnetic field microscope with a diamond single-spin sensor. Appl Phys Lett. 2008;92:243111.
  • Schloss JM, Barry JF, Turner MJ, et al. Simultaneous broadband vector magnetometry using solid-state spins. Phys Rev A. 2018;10:034044.
  • Horsley A, Appel P, Wolters J, et al. Microwave device characterization using a widefield diamond microscope. Phys Rev A. 2018;10:044039.
  • Schmitt S, Gefen T, Stürner FM, et al. Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor. Science. 2017;356:832–837.
  • Weggler T, Ganslmayer C, Frank F, et al. Determination of the three-dimensional magnetic field vector orientation with nitrogen vacancy centers in diamond. Nano Lett. 2020;20:2980–2985.
  • Le Sage D, Arai K, Glenn DR, et al. Optical magnetic imaging of living cells. Nature (London). 2013;496:486–489.
  • Davis HC, Ramesh P, Bhatnagar A, et al. Mapping the microscale origins of magnetic resonance image contrast with subcellular diamond magnetometry. Nat Commun. 2018;9:131.
  • Fukui T, Doi Y, Miyazaki T, et al. Perfect selective alignment of nitrogen-vacancy centers in diamond. Appl Phys Express. 2014;7:055201.
  • Glenn DR, Fu RR, Kehayias P, et al. Micrometer‐scale magnetic imaging of geological samples using a quantum diamond microscope. Geochem Geophys Geosyst. 2017;18:3254–3267.
  • Farchi E, Ebert Y, Farfurnik D, et al. Quantitative vectorial magnetic imaging of multi-domain rock forming minerals using nitrogen-vacancy venters in diamond. Spin. 2017;7:1740015.
  • Shi F, Zhang Q, Wang P, et al. Single-protein spin resonance spectroscopy under ambient conditions. Science. 2015;347:1135–1138.
  • Barry JF, Turner MJ, Schloss JM, et al. Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. Proc Natl Acad Sci. 2016;113:14133–14138.
  • Hsieh S, Bhattacharyya P, Zu C, et al. Imaging stress and magnetism at high pressures using a nanoscale quantum sensor. Science. 2019;366:1349–1354.
  • Yip KY, Ho KO, Yu KY, et al. Measuring magnetic field texture in correlated electron systems under extreme conditions. Science. 2019;366:1355–1359.
  • Margarita L, Thomas P, Loïc T, et al. Magnetic measurements on micron-size samples under high pressure using designed NV centers. Science. 2019;366:1359–1362.
  • Lovchinsky I, Sushkov AO, Urbach E, et al. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic. Science. 2016;351:836–841.
  • Kucsko G, Maurer PC, Yao NY, et al. Nanometre-scale thermometry in a living cell. Nature. 2013;500:54–58.
  • Jelezko F, Gaebel T, Popa I, et al. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys Rev Lett. 2004;93:130501.
  • Wang Y, Dolde F, Biamonte J, et al. Quantum simulation of helium hydride cation in a solid-state spin register. ACS Nano. 2015;9:7769–7774.
  • Taminiau TH, Cramer J, van der Sar T, et al. Universal control and error correction in multi-qubit spin registers in diamond. Nat Nanotechnol. 2014;9:171–176.
  • Waldherr G, Wang Y, Zaiser S, et al. Quantum error correction in a solid-state hybrid spin register. Nature. 2012;506:204–207.
  • Rong X, Geng J, Shi F, et al. Experimental fault-tolerant universal quantum gates with solid-state spins under ambient conditions. Nat Commun. 2015;6:8748.
  • Shi F, Rong X, Xu N, et al. Room-temperature implementation of the Deutsch-Jozsa algorithmwith a single electronic spin in diamond. Phys Rev Lett. 2010;105:040504.
  • Zhang J, Hegde SS, Suter D. Efficient implementation of a quantum algorithm in a single nitrogen-vacancy center of diamond. Phys Rev Lett. 2020;125:030501.
  • Wu Y, Wang Y, Qin X, et al. A programmable two-qubit solid-state quantum processor under ambient conditions. NPJ Quantum Inf. 2019;5:9.
  • Wu E, Jacques V, Zeng H, et al. Narrow-band single-photon emission in the near infrared for quantum key distribution. Opt Express. 2006;14:1296–1303.
  • Beveratos A, Brouri R, Gacoin T, et al. Single photon quantum cryptography. Phys Rev Lett. 2002;89:187901.
  • Alléaume R, Treussart F, Messin G, et al. Experimental open air quantum key distribution with a single photon source. New J Phys. 2004;6:92.
  • Bernien H, Hensen B, Pfaff W, et al. Heralded entanglement between solid-state qubits separated by three metres. Nature. 2013;497:86–90.
  • Hensen B, Bernien H, Dréau AE, et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature. 2015;526:682–696.
  • Kalb N, Reiserer AA, Humphreys PC, et al. Entanglement distillation between solid-state quantum network nodes. Science. 2017;356:928–932.
  • Humphreys PC, Kalb N, Morits JPJ, et al. Deterministic delivery of remote entanglement on a quantum network. Nature. 2018;558:268–273.
  • Lo Piparo N, Razavi M, Munro WJ. Memory-assisted quantum key distribution with a single nitrogen-vacancy center. Phys Rev A. 2017;96:052313.
  • Rozpędek F, Yehia R, Goodenough K, et al. Near-term quantum-repeater experiments with nitrogen-vacancy centers: overcoming the limitations of direct transmission. Phys Rev A. 2019;99:052330.
  • Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett. 1994;19:780–782.
  • Hsiao -W-W-W, Hui YY, Tsai P-C, et al. Fluorescent nanodiamond: a versatile tool for long-term cell tracking, super-resolution imaging, and nanoscale temperature sensing. Acc Chem Res. 2016;49:400–407.
  • Rittweger E, Han KY, Irvine SE, et al. STED microscopy reveals crystal colour Centres with nanometric resolution. Nat Photonics. 2009;3:144–147.
  • Chen XD, Zou CL, Gong ZJ, et al. subdiffraction optical manipulation of the charge state of nitrogen vacancy center in diamond. Light Sci Appl. 2015;4:e230.
  • Rittweger E, Wildanger D, Hell SW. Far-field fluorescence nanoscopy of diamond color centers by ground state depletion. Europhys Lett. 2009;86:14001.
  • Chen EH, Gaathon O, Trusheim ME, et al. Wide-field multispectral super-resolution imaging using spin-dependent fluorescence in nanodiamonds. Nano Lett. 2013;13:2073–2077.
  • Pfender M, Aslam N, Waldherr G, et al. Single-spin stochastic optical reconstruction microscopy. Proc Natl Acad Sci. 2014;111:14669–14674.
  • Steinert S, Ziem F, Hall LT, et al. Magnetic spin imaging under ambient conditions with sub-cellular resolution. Nat Commun. 2013;4:1607.
  • Hall LT, Beart GCG, Thomas EA, et al. High spatial and temporal resolution wide-field imaging of neuron activity using quantum NV-diamond. Sci Rep. 2012;2:401.
  • Sipahigil A, Evans RE, Sukachev DD, et al. An integrated diamond nanophotonics platform for quantum optical networks. Science. 2016;354:847–850.
  • Metsch MH, Senkalla K, Tratzmiller B, et al. Initialization and readout of nuclear spins via a negatively charged silicon-vacancy center in diamond. Phys Rev Lett. 2019;122:190503.
  • Mizuochi N, Makino T, Kato H, et al. Electrically driven single-photon source at room temperature in diamond. Nat Photonics. 2012;6:299–303.
  • Berhane AM, Choi S, Kato H, et al. Electrical excitation of silicon-vacancy centers in single crystal diamond. Appl Phys Lett. 2015;106:171102.
  • Bray K, Kato H, Previdi R, et al. Single crystal diamond membranes for nanoelectronics. Nanoscale. 2018;10:4028–4035.
  • Choi S, Agafonov VN, Davydov VA, et al. Ultrasensitive alloptical thermometry using nanodiamonds with a high concentration of silicon-vacancy centers and multiparametric data analysis. ACS Photonics. 2019;6:1387–1392.
  • Fan J-W, Cojocaru I, Becker J, et al. Correction to germanium-vacancy color center in diamond as a temperature sensor. ACS Photonics. 2018;5:4710.
  • Sildos I, Loot A, Kiisk V, et al. Spectroscopic study of NE8 defect in synthetic diamond for optical thermometry. Diam Relat Mater. 2017;76:27–30.
  • Dolde F, Fedder H, Doherty MW, et al. Electric-field sensing using single diamond spins. Nat Phys. 2011;7:459–463.
  • Dolde F, Doherty MW, Michl J, et al. Nanoscale detection of a single fundamental charge in ambient conditions using the NV-center in diamond. Phys Rev Lett. 2014;112:097603.